【题目】若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y=2x2+1,值域为{5,19}的“孪生函数”共有( )
A.4个
B.6个
C.8个
D.9个
【答案】D
【解析】解:令2x2+1=5得x=± ,令2x2+1=19得x=±3,使得函数值为5的有三种情况,
即x=﹣ , ,± ,使得函数值为19的也有三种情况,即x=3,﹣3,±3,
则“孪生函数”共有3×3=9个.
故选D.
【考点精析】关于本题考查的函数的表示方法和函数的定义域及其求法,需要了解两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法;把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法;用图像表示函数关系的方法叫做图像法;求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知一次函数f(x)在R上单调递增,当x∈[0,3]时,值域为[1,4].
(1)求函数f(x)的解析式;
(2)当x∈[﹣1,8]时,求函数 的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= +bx(其中a,b为常数)的图象经过(1,3)、(2,3)两点.
(I)求a,b的值,判断并证明函数f(x)的奇偶性;
(II)证明:函数f(x)在区间[ ,+∞)上单调递增.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的短轴长为2,离心率 .
(1)求椭圆C的方程;
(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试求k为何值时,三角形OAB是以O为直角顶点的直角三角形.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是C: + =1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.
(1)若直线MN的斜率为 ,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 (a>0,b>0)的离心率为 ,虚轴长为4.
(1)求双曲线的标准方程;
(2)过点(0,1),倾斜角为45°的直线l与双曲线C相交于A、B两点,O为坐标原点,求△OAB的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为R,集合A={x|y=lgx+ },B={x| <2x﹣a≤8}.
(1)当a=0时,求(RA)∩B;
(2)若A∪B=B,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com