精英家教网 > 高中数学 > 题目详情

【题目】已知向量 (m>0,n>0),若m+n∈[1,2],则 的取值范围是(
A.
B.
C.
D.

【答案】B
【解析】解:根据题意,向量 =(3m+n,m﹣3n),
= =
令t= ,则 = t,
而m+n∈[1,2],即1≤m+n≤2,在直角坐标系表示如图,

t= 表示区域中任意一点与原点(0,0)的距离,
分析可得: ≤t<2,
又由 = t,
<2
故选:B.
根据题意,由向量的坐标运算公式可得 =(3m+n,m﹣3n),再由向量模的计算公式可得 = ,可以令t= ,将m+n∈[1,2]的关系在直角坐标系表示出来,分析可得t= 表示区域中任意一点与原点(0,0)的距离,进而可得t的取值范围,又由 = t,分析可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155 到195之间),现将抽取结果按如下方式分成八组:第一组,第二组,…,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.

(1)补全频率分布直方图;

(2)根据频率分布直方图估计这50位男生身高的中位数;

(3)用分层抽样的方法在身高为内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, 为棱的中点.

(Ⅰ)探究直线与平面的位置关系,并说明理由;

(Ⅱ)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A、B、C的对边依次为.已知,外接圆半径边长为整数

(1)求∠A的正弦值;

(2)求边长

(3)在AB、AC上分别有点D、E,线段DE将△ABC分成面积相等的两部分,求线段DE长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)

100位居民月均用水量的频率分布表

组号

分组

频数

频率

1

4

0.04

2

0.08

3

15

4

22

5

6

14

0.14

7

6

8

4

0.04

9

0.02

合 计

100

(1)确定表中的值

(2)求频率分布直方图中左数第4个矩形的高度;

(3)在频率分布直方图中画出频率分布折线图;

(4)我们想得到总体密度曲线,请回答我们应该怎么做?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足: ,且它的前n项和Sn有最大值,则当Sn取到最小正值时,n=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )

①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;

②用简单随机抽样的方法从新生中选出100人;

③西部地区学生小刘被选中的概率为

④中部地区学生小张被选中的概率为

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

同步练习册答案