精英家教网 > 高中数学 > 题目详情
20.“一条直线l与平面α内无数条直线异面”是“这条直线与平面α平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

分析 根据线面平行的位置关系判断即可.

解答 解:由一条直线l与平面α内无数条直线异面推不出直线与平面α平行,不是充分条件,
反之直线与平面α平行,能推出这条直线l与平面α内无数条直线异面,是必要条件,
故选:B.

点评 本题考查了充分必要条件,考查直线和平面的位置关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.关于平面向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$,下列判断中正确的是(  )
A.若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$B.若$\overrightarrow{a}$=(1,k),$\overrightarrow{b}$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow{b}$,则k=$\frac{1}{3}$
C.|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$•$\overrightarrow{b}$=0D.若$\overrightarrow{a}$与$\overrightarrow{b}$是单位向量,则$\overrightarrow{a}$•$\overrightarrow{b}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知△ABC的内角A,B,C所对的边分别为a,b,c,若A=30°,a=1,则$\frac{b+c}{sinB+sinC}$等于(  )
A.1B.2C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的位置关系是(  )
A.外离B.外切C.相交D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设全集U=R,集合A={x|x2-1<0},B={x|x(x-2)>0},则A∩(∁uB)=(  )
A.{x|0<x<2}B.{x|0<x<1}C.{x|0≤x<1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△OMN中,点A在OM上,点B在ON上,且AB∥MN,2OA=OM,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,则终点P落在四边形ABNM内(含边界)时,$\frac{y+x+2}{x+1}$的取值范围是(  )
A.$[\frac{1}{2},2]$B.$[\frac{1}{3},3]$C.$[\frac{3}{2},3]$D.$[\frac{4}{3},4]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC三内角A、B、C的对边分别为a、b、c,且acosC+$\sqrt{3}$csinA-b-c=0,
(1)求角A的值;
(2)求函数f(x)=cos2x+4sinAsinx在区间$[\frac{2π}{7},\frac{3π}{4}]$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.袋中有8只球,编号分别为1,2,3,4,5,6,7,8,现从中任取3只球,以ξ表示取出的3只球中最大号码与最小号码的差,则E(ξ)=(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.为了研究某学科成绩是否与学生性别有关,采用分层抽样的方法,从高二年级抽取了30名男生和20名女生的该学科成绩,得到如图所示男生成绩的频率分布直方图和女生成绩的茎叶图,规定80分以上为优分(含80分).

(Ⅰ)(i)请根据图示,将2×2列联表补充完整;
优分非优分总计
男生
女生
总计50
(ii)据列联表判断,能否在犯错误概率不超过10%的前提下认为“学科成绩与性别有关”?
(Ⅱ)将频率视作概率,从高二年级该学科成绩中任意抽取3名学生的成绩,求成绩为优分人数X的分布列与数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
参考数据:
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案