精英家教网 > 高中数学 > 题目详情
18.将边长为2的正方形ABCD沿对角线AC折起,使得BD=2,则三棱锥D-ABC的顶点D到底面ABC的距离为$\sqrt{2}$.

分析 取AC的中点,连结OB,OD,求出OB,OD,利用勾股定理的逆定理得出OB⊥OD,结合OD⊥AC得出OD⊥平面ABC,由此能求出结果.

解答 解:解:取AC的中点O,连结OB,OD,
∵AD=CD=2,∠ADC=90°,
∴AC=2$\sqrt{2}$,OD=$\frac{1}{2}$AC=$\sqrt{2}$,OD⊥AC.
同理OB=$\sqrt{2}$,
∵BD=2,
∴OD2+OB2=BD2,∴OB⊥OD,
又AC?平面ABC,OB?平面ABC,AC∩OB=O,
∴OD⊥平面ABC,
∴三棱锥D-ABC的顶点D到底面ABC的距离为OD=$\sqrt{2}$.
故答案为:$\sqrt{2}$

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设点M(3,t),若在圆O:x2+y2=6上存在两点A,B,使得∠AMB=90°,则t的取值范围是-$\sqrt{3}$≤t≤$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E为AB的中点,则点B到平面D1EC的距离为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在棱长均为2的正三棱柱ABC-A1B1C1中,点M是侧棱AA1的中点,点P、Q分别是侧面BCC1B1、底面ABC内的动点,且A1P∥平面BCM,PQ⊥平面BCM,则点Q的轨迹的长度为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线$\frac{x^2}{9}-{y^2}=1$的渐近线方程为(  )
A.y=±3xB.$y=±\frac{1}{3}x$C.$y=±\sqrt{3}x$D.$y=±\frac{{\sqrt{3}}}{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点D(0,1),一个焦点与短轴的两端点连线互相垂直.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过$M(0,-\frac{1}{3})$的直线l交椭圆C于A,B两点,判断点D与以AB为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(0,-1),N(2,3).如果直线MN垂直于直线ax+2y-3=0,那么a等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠BAC=90°,AB=AC=2,$A{A_1}=\sqrt{3}$.M,N分别为BC和AA1的中点,P为侧棱BB1上的动点.
(Ⅰ)求证:平面APM⊥平面BB1C1C;
(Ⅱ)若P为线段BB1的中点,求证:CN∥平面AMP;
(Ⅲ)试判断直线BC1与PA能否垂直.若能垂直,求出PB的值;若不能垂直,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是5.

查看答案和解析>>

同步练习册答案