精英家教网 > 高中数学 > 题目详情

【题目】秦九韶是我国南宋时期的数学家,他所著的《九章算术》是我国古代数学名著,体现了我国古代数学的辉煌成就.其中的“更相减损术”蕴含了丰富的思想,根据“更相减损术”的思想设计了如图所示的程序框图,若输入的a=15,输出的a=3,则输入的b可能的值为(
A.30
B.18
C.5
D.4

【答案】B
【解析】解:根据题意,执行程序后输出的a=3, 则执行该程序框图前,输人a、b的最大公约数是3,
分析选项中的四组数,满足条件的是选项B.
故选:B
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=x2﹣3x﹣4的定义域为[0,m],值域为 ,则m的取值范围是(  )
A.(0,4]
B.

C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若直线是函数的图象的一条切线,求实数的值;

(2)当时,(i)关于的方程在区间上有解,求的取值范围,(ii)

证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)曲线在点处的切线的斜率小于,求的单调区间;

(2)对任意的,函数在区间上为增函数,求 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x1 , f(x1),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且初相φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为 . (Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[0, ]时,求函数f(x)的单调递增区间;
(Ⅲ)当x∈[0, ]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学从区间[﹣1,1]随机抽取2n个数x1 , x2 , …,xn , y1 , y2 , …,yn , 构成n个数对(x1 , y1),(x2 , y2),…(xn , yn),该同学用随机模拟的方法估计n个数对中两数的平方和小于1(即落在以原点为圆心,1为半径的圆内)的个数,则满足上述条件的数对约有个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

在直角坐标系中,已知,若

(Ⅰ)求动点P的轨迹的方程;

(Ⅱ)过点M的直线与(1)中轨迹相交于点A、B,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蛋糕店出售一种蛋糕,这种蛋糕的保质期很短,必须当天卖掉,否则容易变质,该蛋糕店每天以每块16元的成本价格制作这种蛋糕若干块,然后以每块26元的价格出售,如果当天卖不完,剩下的蛋糕只能以每块6元低价出售.蛋糕店记录了100天该种蛋糕的日需求量n(单位:块,n∈N*)整理得如图:
(1)若该蛋糕店某一天制作19块蛋糕,求当天的利润y(单位:元)关于当天需求量n的函数解析式;
(2)若要求出售“出售的蛋糕块数不小于n”的频率不小于0.4,求n的最大值.
(3)若该蛋糕店这100天每天都制作19块蛋糕,试计算这100天蛋糕店所获利润的平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在[﹣4,4]上的偶函数,且f(x)= ,则不等式(1﹣2x)g(log2x)<0的解集用区间表示为

查看答案和解析>>

同步练习册答案