精英家教网 > 高中数学 > 题目详情
求由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形面积.
考点:定积分在求面积中的应用
专题:导数的综合应用
分析:利用定积分的几何意义表示区域面积,即可得出结论.
解答: 解:由题意,由直线x=0,x=1,y=0和曲线y=x(x-1)围成的图形如图:
面积为
1
0
[-x(x-1)]dx=-(
1
3
x3-
1
2
x2
)|
 
1
0
=
1
6
点评:本小题考查根据定积分的几何意义,以及会利用定积分求图形面积的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

假设函数g(x)=
x
,f(x)=kx2,其中k为常数.
(1)计算g(x)的图象在点(4,2)处的切线斜率;
(2)求此切线方程;
(3)如果函数f(x)的图象经过点(4,2),计算k的值;
(4)求函数f(x)的图象与(2)中的切线的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1,对角线A1C与平面BDC1交于点O.AC、BD交于点M、E为AB的中点,F为AA1的中点,
求证:(1)C1、O、M三点共线
(2)E、C、D1、F四点共面
(3)CE、D1F、DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足:(Ⅰ)函数f(x)的定义域是R;(Ⅱ)对任意x1,x2∈R,有f(x1+x2)+f(x1-x2)=2f(x1)f(x2);(Ⅲ)f(1)=
3
2
,则下列命题正确的是
 
(只写出所有正确命题的序号)
①函数f(x)是奇函数;
②函数f(x)是偶函数;
③对任意n1,n2∈N,若n1<n2,则f(n1)<f(n2);
④对任意x∈R,有f(x)≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两焦点分别为双曲线C2
x2
2
-y2=1的顶点,直线x+
2
y=0与椭圆C1交于A、B两点,且点A的坐标为(-
2
,1),点P是椭圆C1上异于点A,B的任意一点,点Q满足
AQ
AP
=0,
BQ
BP
=0,且A,B,Q三点不共线.
(1)求椭圆C1的方程
(2)求点Q的轨迹方程
(3)求△ABQ面积的最大值及此时点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=x2-3x在点P处的切线平行于x轴,则点P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

请编写一个程序,求满足m+n<10的所有正整数对.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=AA1=2,E,F分别是CC1,A1B1的中点.
(1)求证:AE⊥平面BCF;
(2)求点F到平面ABE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是抛物线x2=4y上的一个动点,则点 P到直线l1:4x-3y-7=0和l2:y+1=0的距离之和的最小值是(  )
A、4B、3C、2D、1

查看答案和解析>>

同步练习册答案