精英家教网 > 高中数学 > 题目详情

平面直角坐标系内的点集,若对于任意,存在,使得,则称点集满足性质.给出下列三个点集:

.

其中所有满足性质的点集的序号是______

 

【答案】

①③

【解析】

试题分析:设集合中的,构造向量,则,由,则,故向量夹角为,分别画出图象,从图中观察,在②中,当点时,图象上不存在点B,使得.

考点:1、向量的数量积运算及其性质;2、函数的图象和性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设定义域为R的函数f(x)=
|x+1|,x≤0
(x-1)2,x>0

(1)在平面直角坐标系内作出该函数的图象;
(2)试找出一组b和c的值,使得关于x的方程f2(x)+b•f(x)+c=0有7个不同的实根.请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB为平面直角坐标系xOy中单位圆O的直径,点D在第二象限内的圆弧上运动,CD与圆O相切,切点为D,且CD=AB.设∠DAB=θ,问当θ取何值时,四边形ABCD的面积最大?并求出这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
x
+
2
)2(x>0)
,设正项数列an的首项a1=2,前n 项和Sn满足Sn=f(Sn-1)(n>1,且n∈N*).
(1)求an的表达式;
(2)在平面直角坐标系内,直线ln的斜率为an,且ln与曲线y=x2相切,ln又与y轴交于点Dn(0,bn),当n∈N*时,记dn=
1
4
|
Dn+1Dn
|-1
,若Cn=
d
2
n+1
+
d
2
n
2dn+1dn
,设Tn=C1+C2+C3+…+Cn,求
lim
n→∞
n
Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设定义域为R的函数f(x)=
|x+1|,x≤0
x2-2x+1,x>0

(Ⅰ)在平面直角坐标系内作出函数f(x)的图象,并指出f(x)的单调区间(不需证明);
(Ⅱ)若方程f(x)+2a=0有两个解,求出a的取值范围(只需简单说明,不需严格证明).
(Ⅲ)设定义为R的函数g(x)为奇函数,且当x>0时,g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步练习册答案