精英家教网 > 高中数学 > 题目详情

求和1+5+…+(2n-1)=   

 

【答案】

【解析】

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下面的数表序列:
精英家教网
其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.
(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);
(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{bn}求和:
b3
b1b2
+
b4
b2b3
+…
bn+2
bnbn+1
(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+b(a≠0 ),且f(2),f(5)f(4)成等比数列,f(8)=15,求和 Sn=f(1)+f(2)+…+f(n)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知等差数列{an}中,d=
1
3
,n=37,sn=629,求a1及an
(2)求和1+1,
1
2
+3,
1
4
+5
,…,
1
2n-1
+2n-1

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省潮州市金山中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

已知f(x)=ax+b(a≠0 ),且f(2),f(5)f(4)成等比数列,f(8)=15,求和 Sn=f(1)+f(2)+…+f(n)的值.

查看答案和解析>>

科目:高中数学 来源:2014届四川省高一下学期期中理科数学试卷(解析版) 题型:解答题

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

同步练习册答案