精英家教网 > 高中数学 > 题目详情

【题目】在空间中,设m,n为两条不同直线,α,β为两个不同平面,则下列命题正确的是(  )

A. mααβ,则mβ

B. αβ,mα,nβ,则mn

C. mααβ,则mβ

D. m不垂直于α,且nα,则m必不垂直于n

【答案】C

【解析】

因为为两条不同直线,为两个不同平面,在中,若,则,故错误;在中,若,则相交、平行或异面,故错误;在中,若,则由线面垂直的判定定理得,故正确;在中,若不垂直于,且,则有可能垂直于,故错误,

故选C.

【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点M(1,0)和直线x=﹣1上的动点N(﹣1,t),线段MN的垂直平分线交直线y=t于点R,设点R的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线y=kx+b(k≠0)交x轴于点C,交曲线E于不同的两点A,B,点B关于x轴的对称点为点P.点C关于y轴的对称点为Q,求证:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a和b,定义运算“*”:a*b= 设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1 , x2 , x3 , 则x1x2x3的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标中,设椭圆的左右两个焦点分别为,过右焦点且与轴垂直的直线与椭圆相交,其中一个交点为.

(1)求椭圆的方程;

(2)已知经过点且斜率为,直线与椭圆有两个不同的交点,请问是否存在常数,使得向量共线?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体A-BCD中,AD平面BCD,BCCD,CD=2,AD=4.MAD的中点,PBM的中点,点Q在线段AC上,且AQ=3QC.

(I)证明:PQ//平面BCD;

(II)若异面直线PQCD所成的角为,二面角C-BM-D的大小为,求cos的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用秦九韶算法判断方程x5+x3+x2-1=0[0,2]上是否存在实根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线y2=8x的焦点为F,准线为lP为抛物线上一点,PAlA为垂足.如果直线AF的斜率为-,那么|PF|=(  )

A. 4 B. 8 C. 8 D. 16

查看答案和解析>>

同步练习册答案