精英家教网 > 高中数学 > 题目详情

【题目】某工厂为生产一种精密管件研发了一台生产该精密管件的车床,该精密管件有内外两个口径,监管部门规定口径误差的计算方式为:管件内外两个口径实际长分别为,标准长分别为口径误差只要口径误差不超过就认为合格,已知这台车床分昼夜两个独立批次生产.工厂质检部在两个批次生产的产品中分别随机抽取40件作为样本,经检测其中昼批次的40个样本中有4个不合格品,夜批次的40个样本中有10个不合格品.

(Ⅰ)以上述样本的频率作为概率,在昼夜两个批次中分别抽取2件产品,求其中恰有1件不合格产品的概率;

(Ⅱ)若每批次各生产1000件,已知每件产品的成本为5元,每件合格品的利润为10元;若对产品检验,则每件产品的检验费用为2.5元;若有不合格品进入用户手中,则工厂要对用户赔偿,这时生产的每件不合格品工厂要损失25元.以上述样本的频率作为概率,以总利润的期望值为决策依据,分析是否要对每个批次的所有产品作检测?

【答案】(Ⅰ);(Ⅱ)昼批次不做检測为好;夜批次做检测为优.

【解析】

(Ⅰ)先分别求出昼批次和夜批次合格品的概率,再由独立事件同时发生的概率公式,即可求解;

(Ⅱ)分别求出昼批次和夜批次不做检测的利润期望值和都做检测的利润期望值,加以对比,即可得出结论.

(Ⅰ)以样本的频率作为概率,在昼批次中随机抽取1件为合格品的概率是

在夜批次中随机抽取1件为合格品的概率是

故两个批次中分别抽取2件产品,其中恰有1件不合格产品的概率为

(Ⅱ)①若对所有产品不做检测,

为昼批次中随机抽取1件的利润,的可能取值为10

所以的分布列为

10

0.9

0.1

所以

故在不对所有产品做检测的情况下,

1000件产品的利润的期望值为

为夜批次中随机抽取1件的利润,的可能取值为10

所以的分布列为

10

0.75

0.25

所以

故在不对所有产品做检测的情况下,

1000件产品的利润的期望值为

②若对所有产品做检测,

昼批次1000件产品的合格品的期望为900件,不合格品的期望为100件,

所以利润为

夜批次1000件产品的合格品的期望为750件,不合格品的期望为250件,

所以利润为

综上,昼批次不做检测的利润期望6500大于做检測的利润期望6000

故昼批次不做检測为好;

夜批次不做检测的利润期望1250小于做检测的利润期望3750

故夜批次做检测为优.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】学校水果店有苹果、梨、香蕉、石榴、橘子、葡萄、西柚等种水果,西柚数量不多,只够一个人购买,甲乙丙丁戊位同学去购买,每人只能选择其中一种,这位同学购买后,恰好买了其中三种水果,则他们购买水果的可能情况有___________种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.

1)求曲线的方程

2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形中,,点分别是上的动点,将矩形沿所在的直线进行随意翻折,在翻折过程中直线与直线所成角的范围(包含初始状态)为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆的左、右顶点分别为AB,右焦点为F,且点F满足,由椭圆C的四个顶点围成的四边形面积为.过点的直线TATB与此椭圆分别交于点,其中

1)求椭圆C的标准方程;

2)当T在直线时,直线MN是否过x轴上的一定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从该设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的频率):

;②;③,评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备的性能等级.

(2)将直径小于等于的零件或直径大于等于的零件认定为是“次品”,将直径小于等于的零件或直径大于等于的零件认定为是“突变品”,从样本的“次品”中随意抽取2件零件,求“突变品”个数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中,已知设数列的前n项和为,且

1)求数列通项公式;

2)证明:数列是等差数列;

3)是否存在等差数列,使得对任意,都有?若存在,求出所有符合题意的等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2|x1||x2|.

(1)f(x)的最小值m

(2)abc均为正实数,且满足abcm,求证:≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区内有一块以为圆心半径为20米的圆形区域.广场,为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点分别在圆周上;观众席为梯形内且在圆外的区域,其中,且在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过60米.设.

(1)求的长(用表示);

(2)对于任意,上述设计方案是否均能符合要求?

查看答案和解析>>

同步练习册答案