精英家教网 > 高中数学 > 题目详情

【题目】已知是自然对数的底数).

1)求函数的单调区间;

2)曲线处的切线平行,线段的中点为,求证:.

【答案】1的单调增区间是的单调减区间是.2)见解析

【解析】

1)先求导,再根据导数和函数单调性的关系即可求出单调区间,

2)由题意可得,即,再根据基本不等式可得.即可证明,再根据函数的单调性可得

,根据导数和函数的最值即可证明

解:(1)由函数得,,且.

,∴.

由不等式,由不等式,或.

所以的单调增区间是的单调减区间是.

2)因曲线处的切线平行,

所以,即

,即.

,即

..

由(1)知,在区间上递增,在区间递减,且.

所以,当时,.

.

,当时,.

,∴,即

,即

∴函数在区间上单调递增,∴.

在区间上单调递增.

时,.

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)若射线的极坐标方程为.相交于点相交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是直线上的动点,过点的直线与抛物线相切,切点分别是.

1)证明:直线过定点;

2)以为直径的圆过点,求点的坐标及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在直角梯形ABCD中,ABCDABAD,且ABADCD1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,MED的中点,如图②.

(1)求证:AM∥平面BEC

(2)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,面为矩形,面.

1)求证:面

2)已知多面体各顶点均在同一球面上,且该球的表面积为,当这个多面体的体积取得最大值时求其侧视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,侧棱与底面垂直,且分别是的中点,点在线段上,且.

1)求证:不论取何值,总有

2)当时,求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.

(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;

(Ⅱ)设直线与曲线C交于P,Q两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.

(1)的长;

(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为,t为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求直角坐标系下直线与曲线的普通方程;

2)设直线与曲线交于点(二者可重合),交轴于,若,求的值.

查看答案和解析>>

同步练习册答案