已知函数, 在处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数, 若对于任意,总存在, 使得, 求实数 的取值范围.
(1)函数的解析式为 ;(2)时,函数有极小值-2;当时,函数有极大值2 ;(3)a的取值范围是(-∞,-1]∪[ 3,+∞).
解析试题分析:(1)根据函数在极值处导函数为0,极小值为2联立方程组即可求得m,n;(2)由(1)求得函数解析式,对函数求导且让导函数为0,即可求得极大值和极小值;(3)依题意只需即可,当时,函数有最小值-2 ,即对任意总存在,使得的最小值不大于-2 ;而,分、、三种情况讨论即可.
科目:高中数学
来源:
题型:解答题
甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x(元)与年产量t(吨)满足函数关系x=2 000.若乙方每生产一吨产品必须赔付甲方S元(以下称S为赔付价格).
科目:高中数学
来源:
题型:解答题
已知函数,其中.
科目:高中数学
来源:
题型:解答题
如图,现要在边长为的正方形内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为(不小于)的扇形花坛,以正方形的中心为圆心建一个半径为的圆形草地.为了保证道路畅通,岛口宽不小于,绕岛行驶的路宽均不小于.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=在x=0,x=处存在极值。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)∵函数在处取得极小值2,∴ 1分
又 ∴
由②式得m=0或n=1,但m=0显然不合题意 ∴,代入①式得m=4
∴ 2分
经检验,当时,函数在处取得极小值2
∴函数的解析式为 4分
(2)∵函数的定义域为且由(1)有
令,解得:
∴当x变化时,的变化情况如下表:x (-∞,-1) -1 (-1,1) 1 (1,+∞) — 0 + 0 — 减 极小值-2
(1)将乙方的年利润w(元)表示为年产量t(吨)的函数,并求出乙方获得最大利润的年产量;
(2)甲方每年受乙方生产影响的经济损失金额y=0.002t2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?
(1)当时,求函数在处的切线方程;
(2)若函数在区间(1,2)上不是单调函数,试求的取值范围;
(3)已知,如果存在,使得函数在处取得最小值,试求的最大值.
(1)求的取值范围;(运算中取)
(2)若中间草地的造价为元,四个花坛的造价为元,其余区域的造价为元,当取何值时,可使“环岛”的整体造价最低?
(Ⅰ)求实数a,b的值;
(Ⅱ)函数y=f(x)的图象上存在两点A,B使得△AOB是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,求实数c的取值范围;
(Ⅲ)当c=e时,讨论关于x的方程f(x)=kx(k∈R)的实根个数。
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号