精英家教网 > 高中数学 > 题目详情
11.过圆O:x2+y2=4外一点M(4,-1)引圆的两条切线,则经过两切点的直线方程为4x-y-4=0.

分析 设切点是P(x1,y1)、Q(x2,y2),则以P为切点的切线方程是:x1x+y1y=4,以Q为切点的切线方程是:x2x+y2y=4,由此能求出过两切点P、Q的直线方程.

解答 解:设切点是P(x1,y1)、Q(x2,y2),
则以P为切点的切线方程是:x1x+y1y=4,
以Q为切点的切线方程是:x2x+y2y=4,
∵点M(4,-1)在两条切线上,则$\left\{\begin{array}{l}{4{x}_{1}-{y}_{1}=4}\\{4{x}_{2}-{y}_{2}=4}\end{array}\right.$,
∴点P、Q的坐标满足方程:4x-y=4
∴过两切点P、Q的直线方程是:4x-y-4=0.
故答案为:4x-y-4=0.

点评 本题考查经过两个切点的直线方程的求法,是中档题,解题时要认真审题,注意圆的切线方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,0),$\overrightarrow{c}$=(3,4),若λ为实数,($\overrightarrow{b}$+λ$\overrightarrow{a}$)⊥$\overrightarrow{c}$,则λ的值为-$\frac{3}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设x、y是实数,且x2-2xy+y2-$\sqrt{2}$x-$\sqrt{2}$y+6=0,求u=x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数y=$\sqrt{sinx}$+$\sqrt{-cosx}$,且0≤x≤2π,则y的范围是[1,$\sqrt{2+\sqrt{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,AC=5,BC=6,cos(A-B)=$\frac{37}{40}$,则△ABC面积是(  )
A.15B.10$\sqrt{2}$C.12D.$\frac{3\sqrt{231}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.下列函数中,对于定义域内的任意两个不同的x1,x2,都满足$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)的有②③.
①y=${x}^{\frac{1}{2}}$;②y=2x;③y=x2;④y=lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若代数式2x2+3x+7的值是12,则代数式,4x2+6x-10的值应是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知sin(α-$\frac{π}{4}$)=$\frac{7\sqrt{2}}{10}$,cos2α=$\frac{7}{25}$,则sin(α+$\frac{π}{3}$)等于(  )
A.$\frac{3-4\sqrt{3}}{10}$B.$\frac{-3+4\sqrt{3}}{10}$C.$\frac{-4+3\sqrt{3}}{10}$D.$\frac{4-3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(6,4,-4)与点B(-3,-2,2),O为坐标原点,则向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角是180°.

查看答案和解析>>

同步练习册答案