精英家教网 > 高中数学 > 题目详情
已知四边形ABCD中,∠B=∠D=90°,AD=CD=
6
,∠BAC=60°,E为AC的中点;现将△ACD沿对角线AC折起,使点D在平面ABC上的射影H落在BC上.
(1)求证:AB⊥平面BCD;
(2)求三棱锥D-ABE的体积.
(1)证明:∵∠B=90°
∴AB⊥BC
∵DH⊥平面ABC,AB?面ABC
∴AB⊥DH
而BC∩DH=H,BC,DH?面BCD
∴AB⊥面BCD…(5分)
(2)∵AB⊥面BCD,CD?面BCD
∴AB⊥CD
又∵AD⊥CD,AB∩AD=A,AB,AD?面ABD
∴CD⊥面ABD,而BD?面ABD
∴CD⊥BD
∵CD=
6
,∴AC=
2
CD=2
3

∴BC=ACsin60°=2
3
×
3
2
=3
∴BD=
BC2-CD2
=
3

在Rt△BCD中,DH=
BD•CD
BC
=
2
…(10分)
∵DH⊥面ABC,AE=
1
2
AC=
3
,AB=ACcos60°=
3

∴VD-ABE=
1
3
S△ABE•DH=
1
3
×
1
2
AB•AE•sin60°•DH=
6
4
…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD中,底面ABCD为平行四边形,E是SA上一点,试探求点E的位置,使SC平面EBD,并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)已知平面α面β,AB、CD为异面线段,AB?α,CD?β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.
(1)若a=b,求截面四边形MNPQ的周长;
(2)求截面四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1的底面中,AB⊥AC,AB=AC=a,D为CC1的中点,
CC1
AC

(1)λ为何值时,A1D⊥平面ABD;
(2)当A1D⊥平面ABD时,求C1到平面ABD的距离;
(3)当二面角A-BD-C为60°时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知矩形ABCD中AB=3,BC=a,若PA⊥平面AC,在BC边上取点E,使PE⊥DE,则满足条件的E点有两个时,a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1中,∠CAA1=60°,AA1=2AC,BC⊥平面AA1C1C.
(1)证明:A1C⊥AB;
(2)设BC=AC=2,求三棱锥C-A1BC1的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.
(1)求证:BC1⊥平面AB1C;
(2)求证:BC1平面A1CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面是直角梯形,ABDC,∠DAB=90°,
PA⊥底面ABCD,PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)求证:CM平面PAD;
(2)求证:BC⊥平面PAC.

查看答案和解析>>

同步练习册答案