精英家教网 > 高中数学 > 题目详情
已知异面直线a与b所成的角为500,P为空间一点,则过点P与a、b所成的角都是300的直线有且仅有(    )
A.1条B.2条C.3条D.4条
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)正方体ABCDA1B1C1D1 的棱长为 2,且AC BD 交于点OE 为棱DD1 中点,以A 为原点,建立空间直角坐标系Axyz,如图所示.
(Ⅰ)求证:B1O⊥平面EAC
(Ⅱ)若点 F EA 上且 B1FAE,试求点 F 的坐标;
(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=),E,F分别CD.PB的中点。

(Ⅰ)求证:EF平面PAB;,
(Ⅱ)当时,求AC与平面AEF所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图,已知正三棱柱的所有棱长都为4,的中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四边形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分别为CE、AB的中点.

(Ⅰ) 证明:OD//平面ABC;
(Ⅱ)能否在EM上找一点N,使得ON⊥平面ABDE?
若能,请指出点N的位置,并加以证明;
若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(.(本小题满分12分)
如图,四棱锥S-ABCD的底面是矩形,ABa,AD2,SA1,且SA⊥底面ABCD,若

边BC上存在异于B,C的一点P,使得
(1)求a的最大值;
(2)当a取最大值时,求平面SCD的一个单位法向量
及点P到平面SCD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正四面体ABCD的面上,到棱AB以及C、D两点的距离都相等的点共有       (   )
A.1个                       B.2个                       C.3个                       D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一条直线与一个平面成720角,则这条直线与这个平面内不经过斜足的直线所成角中最大角等于(     )
A. 720B.900C. 1080 D.1800

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(理科)如图,是边长为的正方形,都与平面垂直,且,设平面与平面所成二面角为,则 ▲
(文科)如图,二面角的大小是60°,线段.

所成的角为30°.则与平面所成的角的正弦值是  

查看答案和解析>>

同步练习册答案