精英家教网 > 高中数学 > 题目详情

【题目】已知函数,曲线是自然对数的底数)处的切线与圆在点处的切线平行.

(Ⅰ)证明:

(Ⅱ)若不等式上恒成立,求实数的取值范围.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:易知圆在点处的切线方程为处的导数为2,得 求导得最值最小值为,即可证得;

不等式 上恒成立,即 上恒成立. 设 求最值即可.

试题解析:

(Ⅰ)证明:

易知圆在点处的切线方程为

由题意知, ,即,解得

,令,得

时, 上单调递减,

时, 上单调递增.

因此, 处取得极小值,也为最小值,最小值为

,故.

(Ⅱ)不等式 上恒成立

上恒成立.

①当时, 上恒成立 上是减函数,又

故当时,总有,符合题意;

②当时,令,解得

易知上是减函数,在上是增函数,又

故当时,总有,不符合题意;

③当时, 上恒成立 上是减函数,又,故当时,总有,符合题意.

综上所述,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《孙子算经》是中国古代重要的数学著作,约成书于四、五世纪,也就是大约一千五百年前,传本的《孙子算经》共三卷,卷中有一问题:“今有方物一束,外周一匝有三十二枚,问积几何?”该著作中提出了一种解决问题的方法:“重置二位,左位减八,余加右位,至尽虚加一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数是8的整数倍时,均可采用此方法求解,如图,是解决这类问题的程序框图,若输入,则输出的结果为( )

A. 120 B. 121 C. 112 D. 113

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假进行社会实践活动,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:

组数

分组

低碳族人数

占本组的频率

第一组

[25,30)

120

0.6

第二组

[30,35)

195

p

第三组

[35,40)

100

0.5

第四组

[40,45)

a

0.4

第五组

[45,50)

30

0.3

第六组

[50,55)

15

0.3


(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为4,四边形为正方形,平面平面 分别是线段 上的点.

(Ⅰ)如图①,若为线段的中点, ,证明: 平面

(Ⅱ)如图②,若 分别为线段 的中点, ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解关于x的不等式:
(1) >1;
(2)x2﹣ax﹣2a2<0 (a为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=x+b与圆x2+y2﹣2x+4y﹣4=0相交于A,B两点,O为坐标原点,若 =0,则实数b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.
(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣4x﹣4y+4=0,点E(3,4).
(1)过点E的直线l与圆交与A,B两点,若AB=2 ,求直线l的方程;
(2)从圆C外一点P(x1 , y1)向该圆引一条切线,切点记为M,O为坐标原点,且满足PM=PO,求使得PM取得最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一壁画,最高点A处离地面AO=4m,最低点B处离地面BO=2m,观赏它的C点在过墙角O点与地面成30°角的射线上.

(1)设点C到墙的距离为x,当x= m时,求tanθ的值;
(2)问C点离墙多远时,视角θ最大?

查看答案和解析>>

同步练习册答案