精英家教网 > 高中数学 > 题目详情
已知函数 .
(1)若 的极小值为1,求a的值.
(2)若对任意 ,都有 成立,求a的取值范围.
(1) (2) 

试题分析:(1)先求导,利用导数的性质求出存在极小值的条件,然后求解即可;(2)利用导数的求出函数的单调性,然后在求出函数在上的极小值,可得极小值大于等于1,解之即可.
试题解析:(1)因为,所以
当a≤0时,,所以在定义域(0,+∞上单调递减,不存在极小值;
当a>0时,令,可得  ,当 时,有 单调递减;当时,由 单调递增,
所以是函数的极小值点,故函数的极小值为,解得.
(2)由(1)可知,当a≤0时,在定义域(0,+∞上单调递减,且在x=0附近趋于正无穷大,而,由零点存在定理可知函数在(0,1]内存在一个零点,不恒成立;
当a>0时,若恒成立,则,即a≥1,
结合(1)a≥1时,函数在(0,1]内先减后增,要使恒成立,则的极小值大于或等于1成立,所以 即,可得,综上可得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,某自来水公司要在公路两侧铺设水管,公路为东西方向,在路北侧沿直线铺设线路l1,在路南侧沿直线铺设线路l2,现要在矩形区域ABCD内沿直线将l1与l2接通.已知AB = 60m,BC = 80m,公路两侧铺设水管的费用为每米1万元,穿过公路的EF部分铺设水管的费用为每米2万元,设∠EFB= α,矩形区域内的铺设水管的总费用为W.

(1)求W关于α的函数关系式;
(2)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数)的图象在处的切线与轴平行.
(1)确定实数的正、负号;
(2)若函数在区间上有最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中为实常数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)讨论在定义域上的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

处有极小值,则实数     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最大值____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求在区间上的最大值;
(2)若函数在区间上存在递减区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设直线与函数的图像分别交于点,则当达到最小值时的值为   (  )                                    
A.1B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=ex-ax在x=1处取到极值,则a=________.

查看答案和解析>>

同步练习册答案