精英家教网 > 高中数学 > 题目详情
9.用一张4cm×8cm的矩形硬纸卷成圆柱的侧面,则圆柱轴截面的面积为$\frac{32}{π}$cm2(接头忽略不计).

分析 以4为高卷起,则2πr=8,2r=$\frac{8}{π}$;若以8为高卷起,则2πR=4,2R=$\frac{4}{π}$,由此能求出轴截面面积.

解答 解:以4为高卷起,则2πr=8,∴2r=$\frac{8}{π}$,
∴轴截面面积为$\frac{32}{π}$cm2
若以8为高卷起,则2πR=4,
∴2R=$\frac{4}{π}$,
∴轴截面面积为$\frac{32}{π}$cm2
故答案为:$\frac{32}{π}$cm2

点评 本题考查轴截面面积的求法,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆$\frac{x^2}{a^2}+{y^2}=1(a>1)$的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M,记直线BM,BP的斜率分别为k1,k2
(1)当直线PM过点F时,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并确定此时直线PM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下四个关于圆锥曲线的命题:
①在直角坐标平面内,到点(-1,2)和到直线2x+3y-4=0距离相等的点的轨迹是抛物线;
②设F1、F2为两个定点,k为非零常数,若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=k,则P点的轨迹为双曲线;
③方程4x2-8x+3=0的两根可以分别作为椭圆和双曲线的离心率;
④过单位圆O上一定点A作圆的动弦AB,O为坐标原点,若$\overrightarrow{OP}$=($\overrightarrow{OA}$+$\overrightarrow{OB}$),则动点P的轨迹为椭圆.
其中真命题的序号为③.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,则不等式f(x)>f(2x-4)的解集为(  )
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在平面直角坐标系xOy中,以O为顶点,x轴的非负半轴为始边作两个锐角α,β,它们的终边分别与单位圆交于A,B两点.已知A,B的横坐标分别为$\frac{\sqrt{2}}{10},\frac{3}{5}$.
(Ⅰ)求$\frac{si{n}^{2}α+sinαcosα}{sinαcosα-6co{s}^{2}α}$的值;
(Ⅱ)求α+β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$) 的最小正周期为π,将该函数的图象向左平移$\frac{π}{6}$个单位后,得到的图象对应的函数为奇函数,则函数f(x)的图象(  )
A.关于点($\frac{π}{12}$,0)对称B.关于直线x=$\frac{π}{12}$对称
C.关于点($\frac{5}{12}$π,0)对称D.关于直线x=$\frac{5}{12}$π对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m>0,n>0,向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(1,n-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\frac{1}{m}+\frac{2}{n}$的最小值是(  )
A.$2\sqrt{2}$B.2C.$3+2\sqrt{2}$D.$4+2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线(k+1)x+ky-1=0与两坐标轴围成的三角形面积为Sk,则S1+S2+…+Sk=$\frac{k}{2(k+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线方程为$\frac{x^2}{6}-\frac{y^2}{6}=1$,那么它的离心率为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\frac{3}{2}$

查看答案和解析>>

同步练习册答案