精英家教网 > 高中数学 > 题目详情
13.两个整数1908和4187的最大公约数是(  )
A.53B.43C.51D.67

分析 先用4187除以1908,求出余数;再用1908除以余数,得到余数;依此类推,直到余数为0,从而可得两个数的最大公约数.

解答 解:∵4187=1908×2+371,
1908=371×5+53,
371=53×7+0,
∴两个整数1908和4187的最大公约数是53,
故选A.

点评 本题考查辗转相除法求解最大公约数,解题的关键是用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知空间四边形OABC,M在AO上,满足$\frac{AM}{MO}$=$\frac{1}{2}$,N是BC的中点,且$\overrightarrow{AO}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$用a,b,c表示向量$\overrightarrow{MN}$为(  )
A.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$B.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$-$\frac{1}{2}$$\overrightarrow{c}$C.-$\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$D.$\frac{1}{3}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$+$\frac{1}{2}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)将曲线C和直线l化为直角坐标方程;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列命题:①若命题p:$\frac{1}{{x}^{2}-2x-8}$>0,则¬p:$\frac{1}{{x}^{2}-2x-8}$≤0;
②“?x∈R,x3-x2+1≤0“的否定是“?x∈R,x3-x2+1>0”;
③命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
④“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题.
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函数的最小正周期为π,最大值为2,且过(0,1)点,
(1)求函数的解析式;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的单位长度相同,已知直线l的参数方程为$\left\{\begin{array}{l}{x=-1+tcosa}\\{y=1+tsina}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρ=4cosθ.
(Ⅰ)若直线l的斜率为-1,求直线l与曲线C交点的极坐标(ρ≥0,0≤θ<2π);
(Ⅱ)若直线l与曲线C相交弦长为$2\sqrt{3}$,求直线l的参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若全集为实数集R,f(x)、g(x)均为x的二次函数,P={x|f(x)<0},Q={x|g(x)≤0},则不等式组$\left\{\begin{array}{l}f(x)<0\\ g(x)>0\end{array}\right.$的解集可用P、Q表示为P∩CIQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,既是偶函数,又在(0,$\frac{π}{2}$)上单调递减的是(  )
A.y=cosxB.y=sinxC.y=tanxD.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若实数x,y满足xy=1,则x2+3y2的最小值为2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案