精英家教网 > 高中数学 > 题目详情
(12分) 已知三次函数=为实数,=1,
曲线y=在点(1,)处切线的斜率为-6。
(1)求函数的解析式;
(2)求函数在(-2,2)上的最大值
解:(1) 
由导数的几何意义,=-6 ∴ 
=1 ∴
= ………………6分
(2)
=0得  
(-2,-1)时,>0,递增;
(-1,2)时,递减。
∴ 在区间(-2,2)内,函数的最大值为 ………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数定义域为),设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求证:
(3)求证:对于任意的,总存在,满足,并确定这样的的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设函数
(1)求的单调区间;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(1)若,
①求的值;
②存在使得不等式成立,求的最小值;
(2)当上是单调函数,求的取值范围。
(参考数据

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(本小题满分12分)
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:
(Ⅰ)设函数,证明:当时,
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为,证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3+3x2+3x-a的极值个数是                                           (  )
A.2B.1
C.0D.与a值有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
关于的函数与数列具有关系:
,(=1,2,3,…)(为常数),又设函数的导数为方程的实根.
(I)用数学归纳法证明:
(II)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数在点处有极小值,试确定的值,并求出的单调区间。

查看答案和解析>>

同步练习册答案