精英家教网 > 高中数学 > 题目详情
若a,b,c∈R+,且a+b+c=1,求
a
+
b
+
c
的最大值.
分析:
a
+
b
+
c
两边平方,利用基本不等式,即可求得结论.
解答:解:∵(
a
+
b
+
c
2=a+b+c+2(
ab
+
bc
+
ca
)…(3分)
≤1+2(
a+b
2
+
b+c
2
+
c+a
2
)=1+2(a+b+c)=3.…(6分)
a
+
b
+
c
3
,当且仅当a=b=c=
1
3
时取“=”号.…(8分)
∴a=b=c=
1
3
时,
a
+
b
+
c
的最大值为
3
.…(10分)
点评:本题考查最值问题,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

28、(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;
(2)试用上面结论证明下面的命题:若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b且c∈R,则下列不等式中一定成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若a、b、c∈R,且|a-c|<|b|,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若?a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=
ex+t
ex+1
是“可构造三角形函数”,则实数t的取值范围是(  )
A、[
1
2
,2]
B、[0,1]
C、[1,2]
D、[0,+∞)

查看答案和解析>>

同步练习册答案