精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求曲线在点处的切线方程.

2)当时,若对任意的,都有,求实数a的取值范围.

【答案】1;(2.

【解析】

1)求得的导数,可得切线的斜率和切点,由点斜式方程可得所求切线方程;

2)求得的导数,讨论的单调区间,考虑的单调性,求得最小值,可令其不小于,解不等式可得所求范围.

解:(1)当时,

所以

所以曲线在点处的切线斜率

,所以曲线在点处的切线方程为,即.

2)由

.

时,上单调递增,

,显然成立;

时,由,得

,得

所以上单调递减,在上单调递增.

时,上单调递减,

所以

所以对任意的,都有等价于

解得

,所以

②当时,

所以上的最小值为.

又当时,,显然成立.

综上,实数a的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,菱形所在的平面,中点,上的点.

1)求证:平面平面

2)若的中点,当时,是否存在点,使直线与平面的所成角的正弦值为?若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C和椭圆有公共的焦点,且离心率为

1)求双曲线C的方程.

2)经过点M21)作直线l交双曲线CAB两点,且MAB的中点,求直线l的方程并求弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中,角所对的边分别为,满足

1)求的大小;

2)如图,,在直线的右侧取点,使得.当角为何值时,四边形面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(1)求椭圆C的标准方程;

(2)若直线与椭圆C交于PQ均在第一象限,直线OPOQ的斜率分别为,且(其中O为坐标原点).证明:直线l的斜率k为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数是偶函数,若方程在区间(其中为自然对数的底)上有两个不相等的实数根,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,ABACA1CBC1AB1BC1DE分别是AB1BC的中点.

求证:(1)DE∥平面ACC1A1

(2)AE⊥平面BCC1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).M是曲线上的动点,将线段OM绕O点顺时针旋转得到线段ON,设点N的轨迹为曲线.以坐标原点O为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在(1)的条件下,若射线与曲线分别交于A, B两点(除极点外),且有定点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如下四个命题:①若“”为假命题,则均为假命题;②命题“若,则”的否命题为“若,则”; ③“,则”的否定是“,则”;④在中,“”是“”的充要条件.其中正确的命题的个数是( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案