精英家教网 > 高中数学 > 题目详情
已知椭圆的右焦点为F,右准线与x轴的交点为D.在椭圆上一点P使得,则该椭圆的离心率为   
【答案】分析:根据题意过点P作PH垂直于x轴,并且交x轴与点H,过点P作PE垂直于右准线,并且交右准线与点E,由题意可得:∠DPE=∠PDF.由椭圆的第二定义可得:,再利用解三角形的有关知识可得:|PH|=|PF|,|DE|=|PE|,进而利用两式相等可得答案.
解答:解:根据题意过点P作PH垂直于x轴,并且交x轴与点H,过点P作PE垂直于右准线,并且交右准线与点E,如图所示:

由图象可得:∠DPE=∠PDF.
由椭圆的第二定义可得:
因为∠PFD=60°,
所以在△PFH中,|PH|=|PF|sin∠PFD=|PF|,
在△PDE中,|DE|=|PE|tan∠DPE=|PE|,
因为|PH|=|ED|,
所以|PF|=|PE|,
所以
故答案为:
点评:解决此类问题的关键是熟练掌握椭圆的第二定义,以及解三角形的有关知识点,此题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的右焦点为F,右准线为l,A、B是椭圆上两点,且|AF|:|BF|=3:2,直线AB与l交于点C,则B分有向线段
AC
所成的比为(  )
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年黄冈中学二模理)如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于M、N两点,右准线x轴于点K,左顶点为A.

(1)求证:KF平分∠MKN

(2)直线AM、AN分别交准线于点P、Q,设直线MN的倾斜角为,试用表示线段PQ的长度|PQ|,并求|PQ|的最小值.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(14分)已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切。

  (1)已知椭圆的离心率;

  (2)若的最大值为49,求椭圆C的方程。

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(重庆卷)数学理工类模拟试卷(三) 题型:解答题

如图,已知椭圆的右焦点为F,过F的直线(非x轴)交椭圆于MN两点,右准线x轴于点K,左顶点为A

    (Ⅰ)求证:KF平分∠MKN

   (Ⅱ)直线AMAN分别交准线于点PQ

设直线MN的倾斜角为,试用表示

线段PQ的长度|PQ|,并求|PQ|的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010年广东省高考冲刺强化训练试卷十三文科数学 题型:解答题

(本小题满分14分)已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切.

  (Ⅰ)求椭圆的离心率;

  (Ⅱ)若的最大值为49,求椭圆C的方程.

 

查看答案和解析>>

同步练习册答案