精英家教网 > 高中数学 > 题目详情

.已知函数f(x)=x2+|x-a|+1,a∈R.

(1)试判断f(x)的奇偶性;

(2)若-≤a≤,求f(x)的最小值.

(1)f(x) 为非奇非偶函数(2)a2+1


解析:

(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),

此时,f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,

f(a)≠f(-a),f(a)≠-f(-a),此时,f(x) 为非奇非偶函数.

(2)当x≤a时,f(x)=x2-x+a+1=(x-)2+a+,

∵a≤,故函数f(x)在(-∞,a]上单调递减,

从而函数f(x)在(-∞,a]上的最小值为f(a)=a2+1.

当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+,

∵a≥-,故函数f(x)在[a,+∞)上单调递增,从而函数f(x)在[a,+∞)上的最小值为f(a)=a2+1.

综上得,当-≤a≤时,函数f(x)的最小值为a2+1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案