【题目】某大型超市拟对店庆当天购物满元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若,求顾客转动一次转盘获得元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为,当取何值时, 的方差最小?
(结论不要求证明)
科目:高中数学 来源: 题型:
【题目】已知集合A={x|f(x)=lg(x﹣1)+ },集合B={y|y=2x+a,x≤0}.
(1)若a= ,求A∪B;
(2)若A∩B=,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的图象与x轴相邻两个交点间的距离为 ,且图象上一个最低点为M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调递增区间;
(Ⅲ)当x∈[ , ]时,求f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个人有n把钥匙,其中只有一把可以打开房门,他随意的进行试开,若试开过的钥匙放在一边,试开次数X为随机变量,则P(X=k)=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项和为Sn , 且a2=3,S5=25.
(1)求数列{an}的通项公式an;
(2)设数列{ }的前n项和为Tn , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com