A
分析:先将关于x的方程x2+(k-3)x+k2=0一根小于1,另一根大于1问题转化为函数f(x)=x2+(k-3)x+k2的零点位于[0,1),(1,+∞)上,利用二次函数的图象和性质得系数k需满足的不等式,即可解得k的范围
解答:设f(x)=x2+(k-3)x+k2,
则函数f(x)为开口向上的抛物线,且f(0)=k2≥0,
∴关于x的方程x2+(k-3)x+k2=0一根小于1,另一根大于1,即函数f(x)的零点位于[0,1),(1,+∞)上,
故只需f(1)<0即可,即1+k-3+k2<0
解得:-2<k<1
故选 A
点评:本题主要考查了一元二次方程根的分布问题的解法,方程的根与函数零点间的关系,二次函数的图象和性质,转化化归数形结合的思想方法