精英家教网 > 高中数学 > 题目详情

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)

)根据频率直方图估算型节能灯的平均使用寿命;

)根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;

)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

【答案】(Ⅰ)3440小时;(Ⅱ)4;(Ⅲ)应选择A型节能灯.

【解析】

(Ⅰ)由频率直方图即可得到平均使用寿命;(Ⅱ)根据题意即可得到一年内需更换的支数;(Ⅲ)分别计算所花费用,即可作出判断.

)由图可知,各组中值依次为,对应的频率依次为,故型节能灯的平均使用寿命为小时.

)由图可知,使用寿命不超过小时的频率为,将频率视为概率,每支灯管需要更换的概率为,故估计一年内型节能灯需更换的支数为.

)若选择型节能灯,一年共需花费元;

若选择型节能灯,一年共需花费元.

因为,所以该商家应选择A型节能灯.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动圆与圆外切,与圆内切.

1)求动圆圆心的轨迹方程;

2)直线过点且与动圆圆心的轨迹交于两点.是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:

①“,则xy互为倒数的逆命题;

②“面积相等的三角形全等的否命题;

③“,则有实根的逆否命题;

④“,则的逆命题。

其中真命题是( )

A.①②④B.②③④C.①②③D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,是边长为2的正三角形,EFH分别为APABAC的中点,PFBE于点MCFBH于点N

求证:平面BEH

求证:

求直线PA与平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面, ,是线段的中点.

(1)证明:平面

(2)当为何值时,四棱锥的体积最大?并求此最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和满足,.数列的前项和为,则满足的最小的值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.

其中正确的有____________(把所有正确的序号都填上).

查看答案和解析>>

同步练习册答案