精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinωx·cosωx-cos2ωx(ω>0)的最小正周期为.

(1)求ω的值;

(2)在△ABC中,sinB,sinA,sinC成等比数列,求此时f(A)的值域.

【答案】见解析

【解析】 (1)f(x)=sin2ωx- (cos2ωx+1)=sin(2ωx-)-,因为函数f(x)的周期为T=,所以ω=.

(2)由(1)知f(x)=sin(3x-)-

易得f(A)=sin(3A-)-.

因为sinB,sinA,sinC成等比数列,

所以sin2A=sinBsinC,

所以a2=bc,

所以cosA= (当且仅当b=c时取等号),

因为0<A<π,

所以0<A≤

所以-<3A-

所以-<sin(3A-)≤1,

所以-1<sin(3A-)-

所以函数f(A)的值域为(-1,].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (R)

(1) ,求函数的极值;

2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若f(1)=0,求函数fx)的最大值;
(Ⅱ)令,讨论函数gx)的单调区间;
(Ⅲ)若a=2,正实数x1x2满足证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.

(Ⅰ)求椭圆C的标准方程;

(Ⅱ)若直线l:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=,判断△AOB的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面

1)求证: 平面

2)点在线段上运动,设平面与平面所成二面角的平面角为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义域为的奇函数,且.

(1)求的解析式;

(2)证明在区间上是增函数;

(3)求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面平面,底面为梯

形, , .且均为正三角形, 的中点,

重心.

(1)求证: 平面

(2)求异面直线的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在△ABC中,已知点D在BC边上,满足AD⊥AC,cos ∠BAC=-,AB=3,BD=.

(1)求AD的长;

(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有下列命题:

函数的图象关于轴对称;

在区间上,函数是减函数;

在区间上,函数是增函数;

函数的值域是 .其中正确命题序号为____.

查看答案和解析>>

同步练习册答案