【题目】如图,四面体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点.
(1)求异面直线AB与EF所成角的余弦值;
(2)求E到平面ACD的距离;
(3)求EF与平面ACD所成角的正弦值.
【答案】
(1)解:如图,分别以直线BC,BD,AB为x,y,z轴建立空间直角坐标系,
∵AB=BC=BD=4,E、F分别为棱BC、AD的中点.
∴A(0,0,4),C(4,0,0),D(0,4,0),E(2,0,0),F(0,2,2),
∵ =(0,0,﹣4), =(﹣2,2,2),
设异面直线AB与EF所成角为θ,
则cosθ= = = ,
即异面直线AB与EF所成角的余弦值为
(2)解:设平面ACD的一个法向量 =(x,y,1),
∵ =(4,0,﹣4), =(﹣4,4,0),
由 ,得 ,
故 =(1,1,1),
∵F∈平面ACD, =(﹣2,2,2),
∴E到平面ACD的距离d= = =
(3)解:由(2)中平面ACD的一个法向量 =(1,1,1),
设EF与平面ACD所成角为α.
则sinα=cos< , >= = = .
【解析】(1)如图,分别以直线BC,BD,AB为x,y,z轴建立空间直角坐标系,求出异面直线AB与EF的方向向量,代入向量夹角公式,可得异面直线AB与EF所成角的余弦值;(2)求出平面ACD的一个法向量 =(1,1,1),结合F∈平面ACD, =(﹣2,2,2),可得:E到平面ACD的距离d= ;(3)由(2)中平面ACD的一个法向量 =(1,1,1),设EF与平面ACD所成角为α.则sinα=cos< , >.
【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(x﹣1)2+lnx+1,g(x)=f(x)﹣x,其中a∈R.
(Ⅰ)当a=﹣ 时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若y=f(x)图象上的点都在 所表示的平面区域内,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中点,A1E⊥平面ABC.
(I)证明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求点B到平面ACC1A1的距离;
②求直线CB1与平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex , g(x)=kx+1.
(I)求函数y=f(x)﹣(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在实数m使对任意x∈(0,m)都有|f(x)﹣g(x)|>x成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,函数f(x)= +|lnx﹣a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤ 恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com