分析 根据题中所给的规律,进行归纳猜想,得出本题结论.
解答 解:由题意知:
12=1,
12-22=-(22-12)=-(2-1)(2+1)=-(1+2)=-3,
12-22+32=1+(32-22)=1+(3-2)(3+2)=1+2+3=6,
12-22+32-42=-(22-12)-(42-32)=-(1+2+3+4)=-10,
…
12-22+32-42+…+(-1)n+1n2=(-1)n+1(1+2+3+…+n)=(-1)n+1•$\frac{n(n+1)}{2}$.
∴照此规律,第n个等式可为12-22+32-42+…+(-1)n+1n2=(-1)n+1•$\frac{n(n+1)}{2}$.
故答案为:12-22+32-42+…+(-1)n+1n2=(-1)n+1•$\frac{n(n+1)}{2}$
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 4 | C. | $\frac{3}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
P(X2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com