精英家教网 > 高中数学 > 题目详情

【题目】某学校积极开展服务社会,提升自我的志愿者服务活动,九年级的五名同学(三男两女)成立了交通秩序维护小分队.若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是________

【答案】

【解析】

记三名男生分别记为123,两名女生分别记为45,利用列举法得到基本事件的总数和所求事件包含基本事件的个数,利用古典概型概率的计算公式,即可求解.

由题意,记三名男生分别记为123,两名女生分别记为45

则从该小分队中任选两名同学的所有基本事件为(12)(13)(14)(15)(23)(24)(25)(34)(35)(45),共10个.

恰是一男一女为事件A,则A包含的基本事件为(14)(15)(24)(25)(34)(35),共6个,

故所求的概率为P(A).

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在R上的两个周期函数,的周期为4的周期为2,且是奇函数.时,,其中k>0.若在区间(09]上,关于x的方程8个不同的实数根,则k的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图所示,某窑洞窗口形状上部是圆弧,下部是一个矩形,圆弧所在圆的圆心为O,经测量米,米,,现根据需要把此窑洞窗口形状改造为矩形,其中EF在边上,GH在圆弧.,矩形的面积为S.

1)求矩形的面积S关于变量的函数关系式;

2)求为何值时,矩形的面积S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“函数”.

1)试判断函数是否是“函数”;

2)若函数为“函数”,求实数的取值范围;

3)若函数为“函数”,且,求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C的焦点为F,经过点F的直线与抛物线交于AB两点.

(1),求线段中点M的轨迹方程;

(2)若直线AB的方向向量为,当焦点为时,求的面积;

(3)M是抛物线C准线上的点,求证:直线的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为点.为椭圆上的一动点,面积的最大值为.过点的直线被椭圆截得的线段为,当轴时,

(1)求椭圆的方程;

(2)椭圆上任取两点AB,以为邻边作平行四边形.若,则是否为定值?若是,求出定值;如不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形为梯形,,四边形为矩形,且平面平面,又.

1)求证:

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点中点,且,现将三角形沿折起,使点到达点的位置,且与平面所成的角为.

(1)求证:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案