精英家教网 > 高中数学 > 题目详情
精英家教网如图,直线L过点P(0,1),夹在两已知直线l1:2x+y-8=0和l2:x-3y+10=0之间的线段AB恰被点P平分.
(1)求直线l的方程;
(2)设点D(0,m),且AD∥l1,求:△ABD的面积.
分析:(1)设出直线l1上的动点B的坐标,由中点坐标公式求出A的坐标,代入直线l2的方程求得a的值;
(2)利用直线平行斜率相等求出m的值,得到D的坐标,由两点间的距离公式求出AD的长度,由点到直线的距离公式求出AD边上的高,代入面积公式得答案.
解答:解:(1)∵点B在直线l1:2x+y-8=0上,可设B(a,8-2a),
又P(0,1)是AB的中点,
∴A(-a,2a-6),
∵点A在直线l2:x-3y+10=0上,∴-a-3(2a-6)+10=0,
解得a=4,即B(4,0).
故直线l的方程是x+4y-4=0;
(2)由(1)知A(-4,2),
又AD∥l1,则kAD=
2-m
-4-0
=-2

∴m=-6,则D(0,-6).
点A到直线l1的距离d=
|-4×2+2×1-8|
22+12
=
14
5
5

|AD|=
(-4-0)2+(2+6)2
=4
5

S△ABD=
1
2
|AD|•d=
1
2
•4
5
14
5
=28
点评:本题考查了点到直线的距离公式,考查了两条直线的交点问题,训练了直线平行和斜率的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,P是抛物线C:y=
12
x2上一点,直线l过点P且与抛物线C交于另一点Q.若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).
(1)若l经过点F,求弦长|PQ|的最小值;
(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T
①求证:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线l过点P(4,1),交x轴、y轴正半轴于A、B两点;
(1)求△AOB面积的最小值及此时直线l的方程;
(2)已知直线l1:y=kx+3k+3(k∈R)经过定点D,当点M(m,n)在线段DP上移动时,求
n+2
m+1
的取值范围;
(3)求
PA
PB
的最大值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,过点P (0,-2)的直线l交抛物线y2=4x于A,B两点,求以OA,OB为邻边的平行四边形OAMB的顶点M的轨迹方程.

查看答案和解析>>

同步练习册答案