精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱的侧棱垂直于底面,且是棱的中点.

1)证明:

2)求二面角的余弦值.

【答案】(1)证明见解析(2)

【解析】

1)由侧棱垂直于底面,且,得可侧面与底面垂直,从而与侧面垂直,因此有,即有,于是只要证即可有线面垂直,从而证,这个在矩形由相似三角形可得证;

2)以分别以轴建立空间直角坐标系,求出平面和平面法向量,有平面法向量夹角的余弦值得二面角的余弦值(注意确定二面角是锐角还是钝角).

1)证明:∵平面

∴四边形是矩形

中点,且

,∴

连接

,∴相似

,∴

,∴平面

平面

平面,∴

平面,∴

2)解∶如图,分别以轴建立空间直角坐标系,则

设平面的法向量为,则

解得:

同理,平面的法向量

设二面角的大小为,则

即二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称强军利刃”“强国之盾,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足,且时,,则函数上的所有零点之和为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Tn为数列{an}的前n项的积,即Tn=a1a2an

1)若Tn=n2,求数列{an}的通项公式;

2)若数列{an}满足Tn=1an)(nN*),证明数列为等差数列,并求{an}的通项公式;

3)数列{an}共有100项,且满足以下条件:

1k99kN*).

(Ⅰ)求的值;

(Ⅱ)试问符合条件的数列共有多少个?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,点在线段上运动,则

A.直线平面

B.三棱锥的体积为定值

C.异面直线所成角的取值范围是

D.直线与平面所成角的正弦值的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线焦点的直线与抛物线交于(其中点在轴的上方)两点.

1)若线段的长为3,求到直线的距离;

2)证明:为钝角三角形;

3)已知,求三角形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在半径为的球内有一内接正三棱锥,它的底面三个顶点恰好都在同一个大圆上,一个动点从三棱锥的一个顶点出发沿球面运动,经过其余三点后返回,则经过的最短路程是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园草坪上有一扇形小径(如图),扇形半径为,中心角为,甲由扇形中心出发沿以每秒2米的速度向快走,同时乙从出发,沿扇形弧以每秒米的速度向慢跑,记秒时甲、乙两人所在位置分别为,,通过计算,判断下列说法是否正确:

(1)当时,函数取最小值;

(2)函数在区间上是增函数;

(3)若最小,则

(4)上至少有两个零点;

其中正确的判断序号是______(把你认为正确的判断序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),曲线的参数方程为为参数),直线与曲线交于两点.

(1)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求曲线的极坐标方程;

(2)若,点,求的值.

查看答案和解析>>

同步练习册答案