精英家教网 > 高中数学 > 题目详情
已知直线l⊥平面α,直线m∥平面β,下列命题中正确的是(  )
A、若α⊥β,则l⊥m
B、若α⊥β,则l∥m
C、若l⊥m,则α∥β
D、若l∥m,则α⊥β
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:由已知中直线l⊥平面α,直线m∥平面β,结合条件α⊥β,我们可以得到l与m可能平行、可能相交也可能异面,由此可以判断A、B的真假,结合条件l⊥m,我们可以根据线面垂直,面面平行的几何特征,判断C的正误,结合条件l∥m,我们可以根据面面垂直的判定方法,判断D的对错,进而得到答案.
解答: 解:对于A,B若α⊥β,直线l⊥平面α,直线m∥平面β,则l与m可能平行、可能相交也可能异面,故A、B均不正确;
对于C,若l⊥m,直线l⊥平面α,直线m∥平面β,则α与β可能平行也可能相交,故C不正确;
对于D,若l∥m,直线l⊥平面α,则直线m⊥平面α,又∵直线m∥平面β,则α⊥β,故D正确;
故选:D.
点评:本题考查的知识点是空间平面与平面关系的判定及直线与直线关系的确定,熟练掌握空间线面关系的几何特征是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在数列{an}中,a1=-1,a2=2,an+1+an-1=2(an+1)(n≥2,n∈N+).
(1)求证:数列{an-an-1}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

说出下列算法的结果.运行时输入3、4、5,运行结果为输出:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
2
,an-1-an=
anan-1
n(n-1)
,(n≥2),则该数列的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各图中,可表示函数y=f(x)的图象的只可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的半径为3,圆心C在x轴下方且直线y=x上,x轴被圆C截得的弦长为2
5

(Ⅰ)求圆C的方程;
(Ⅱ)是否存在斜率为1的直线l,使得以l被圆C截得的弦AB为直径的圆过原点?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设在四面形ABCD中,AB⊥DC,AD⊥DC,若|
AB
|=3,|
AD
|=5,则
AC
BD
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某机器总成本y(万元)与产量x(台)之间的函数关系式是y=x2-75x,若每台机器售价为25万元,则该厂获利润最大时应生产的机器台数为(  )
A、30B、40C、50D、60

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数fn(x)=anx2+bnx+nc(ab≠0,n∈N+).
(1)若a,b,c均为整数,且f1(0),f1(1)均为奇数,求证:f1(x)=0没有整数根.
(2)若a,b为两不相等的实数,求证:数列{fn(1)-nc}不是等比数列.

查看答案和解析>>

同步练习册答案