【题目】如图,直线PQ与⊙O相切于点A,AB是⊙O的弦,∠PAB的平分线AC交⊙O于点C,连结CB,并延长与直线PQ相交于点Q,若AQ=6,AC=5.
(Ⅰ)求证:QC2﹣QA2=BCQC;
(Ⅱ)求弦AB的长.
【答案】(Ⅰ)证明见解析;(Ⅱ)
【解析】试题(Ⅰ)由于PQ与⊙O相切于点A,再由切割线定理得:QA2=QBQC=(QC﹣BC)QC=QC2﹣BCQC从而命题得到证明
(Ⅱ)解:PQ与⊙O相切于点A,由弦切角等于所对弧的圆周角∠PAC=∠CBA,又由已知∠PAC=∠BAC,所以∠BAC=∠CBA,从而AC=BC=5,又知AQ=6,由(Ⅰ)可得△QAB∽△QCA,由对应边成比例,求出AB的值.
试题解析:(Ⅰ)证明:∵PQ与⊙O相切于点A,
∴由切割线定理得:QA2=QBQC=(QC﹣BC)QC=QC2﹣BCQC.
∴QC2﹣QA2=BCQC.
(Ⅱ)解:∵PQ与⊙O相切于点A,∴∠PAC=∠CBA,
∵∠PAC=∠BAC,∴∠BAC=∠CBA,∴AC=BC=5
又知AQ=6,由(Ⅰ) 可知QA2=QBQC=(QC﹣BC)QC,∴QC=9
由∠QAB=∠ACQ,知△QAB∽△QCA,∴,∴.
科目:高中数学 来源: 题型:
【题目】已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥;③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,则三个命题中正确命题的个数为( )个.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多边形中(图1).四边形为长方形,为正三角形,,,现以为折痕将折起,使点在平面内的射影恰好是的中点(图2).
(1)证明:平面:
(2)若点在线段上,且,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲,E是边长等于2的正方形的边CD的中点,以AE、BE为折痕将△ADE与△BCE折起,使D,C重合(仍记为D),如图乙.
(1)探索:折叠形成的几何体中直线DE的几何性质(写出一条即可,不含DE⊥DA,DE⊥DB,说明理由);
(2)求二面角D-BE-A的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数(其中,m,n为常数)
(1)当时,对有恒成立,求实数n的取值范围;
(2)若曲线在处的切线方程为,函数的零点为,求所有满足的整数k的和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com