精英家教网 > 高中数学 > 题目详情
10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$与抛物线y2=2px(p>0)有公共焦点F且交于A,B两点,若直线AB过焦点F,则该双曲线的离心率是(  )
A.$\sqrt{2}$B.1+$\sqrt{2}$C.2$\sqrt{2}$D.2+$\sqrt{2}$

分析 根据抛物线与双曲线的焦点相同,可得 $\frac{p}{2}$=c,经过利用直线AB,过两曲线的公共焦点建立方程关系即可求出双曲线的离心率.

解答 解:∵抛物线y2=2px(p>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$有共同的焦点,
∴$\frac{p}{2}$=c,
∵直线AB过两曲线的公共焦点F,
∴($\frac{p}{2}$,p),即(c,2c)为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$上的一个点,
∴$\frac{{c}^{2}}{{a}^{2}}$-$\frac{4{c}^{2}}{{b}^{2}}$=1,
∴(c2-a2)c2-4a2c2=a2(c2-a2),
∴e4-6e2+1=0,
∴e2=3±2$\sqrt{2}$,
∵e>1,
∴e=1+$\sqrt{2}$,
故选:B.

点评 本题考查抛物线与双曲线的综合,考查抛物线与双曲线的几何性质,确定几何量之间的关系是关键.综合性较强,考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)图象的最高点D的坐标为$(\frac{π}{8},2)$,与点D相邻的最低点坐标为$(\frac{5π}{8},-2)$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求满足f(x)=1的实数x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知椭圆的中心在原点,离心率e=$\frac{1}{2}$,且它的一个焦点与抛物线y2=-8x的焦点重合,则此椭圆方程为(  )
A.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{8}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“$cosα=\frac{1}{2}$”是“$α=\frac{π}{3}$”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若点P(2,0)到双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线的距离为1,则a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(-2,2).
(1)若$\overrightarrow{a}•\overrightarrow{b}$=$\frac{14}{5}$,求(sinα+cosα)2的值;
(2)若$\overrightarrow{a}∥\overrightarrow{b}$,求sin(π-α)•sin($\frac{π}{2}+α$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知关于x的二次函数f(x)=ax2-2bx+1,设点(a,b)是区域$\left\{\begin{array}{l}x+y-2≤0\\ x+1≥0\\ y+1≥0\end{array}\right.$内的随机点,则函数f(x)在区间[1,+∞)上是增函数的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{8}$C.$\frac{7}{16}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x(百元)与日销售量y(件)之间有如下关系:
x(百元)56789
y(件)108961
(1)求y关于x的回归直线方程;
(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?
相关公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知P是椭圆$\frac{x^2}{5}+\frac{y^2}{4}=1$上一点,F1和F2是焦点,若$∠{F_1}P{F_2}={60^0}$,则△PF1F2的面积为(  )
A.$5\sqrt{3}$B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{5\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案