精英家教网 > 高中数学 > 题目详情
13.如图是某学校一名篮球运动员在10场比赛中所得分数的茎叶图,则该运动员在这10场比赛中得分的中位数为15.

分析 根据中位数的定义进行求解即可.

解答 解:根据茎叶图将数据从小到大排列之后,对应的第5个数为14,第6个数为16,
则对应的中位数为$\frac{14+16}{2}$=15,
故答案为:15.

点评 本题主要考查茎叶图的应用以及中位数的求解,利用中位数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xoy中,己知圆C1:(x+3)2+(y-1)2=25和圆C2:(x-4)2+(y-2)2=4.
(1)判断两圆的位置关系:
(2)求过两圆的圆心的直线的方程:
(3)若直线m过圆C1的圆心,且被圆C2截得的弦长为2$\sqrt{3}$,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC的面积为3,且满足2$\sqrt{3}$≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,设$\overrightarrow{AB}$、$\overrightarrow{AC}$的夹角为θ.
(1)求θ的取值范围;
(2)求函数f(θ)=2sin2($\frac{π}{4}$+θ)-cos2θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若两个椭圆的离心率相等,则称它们为“相似椭圆”.如图,在直角坐标系xOy中,已知椭圆C1:$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1,A1,A2分别为椭圆C1的左右顶点,椭圆C2以线段A1A2为短轴且与椭圆C1为“相似椭圆”
(1)求椭圆C2的方程;
(2)设P为椭圆C2上异于A1,A2的任意一点,过P作PQ⊥x轴,垂足为Q,线段PQ交椭圆C1于H,求证:H为△PA1A2的垂心(垂心为三角形三条高的交点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|0≤x≤2},N={y|0≤y≤2},从M到N有四种对应如图所示,其中能表示为M到N的函数关系的是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等比数列{an}的前4项和为4,前12项和为28,则它的前8项和是(  )
A.-8B.12C.-8或12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$两两所成角相等,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=3,则|$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$|为$\sqrt{3}$或6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|≤2,则$\overrightarrow{b}$在$\overrightarrow{a}$上的投影长度的取值范围是(  )
A.[0,$\frac{1}{13}$]B.(0,$\frac{5}{13}$]C.[$\frac{1}{13}$,1]D.[$\frac{3}{4}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直角三角形的两直角边长分别为2和4,求两直角边上的中线所夹的锐角的余弦值.

查看答案和解析>>

同步练习册答案