精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,的中点.

1)求证:

2)求二面角的平面角的正弦值.

【答案】1)证明见解析;(2

【解析】

1)利用等腰三角形的性质得到,由勾股定理逆定理得,由线面垂直的判定定理即可证明;

2)建立空间直角坐标系,分别求出面与面的法向量,利用向量的夹角公式计算法向量夹角,从而可得二面角的平面角的正弦值.

解:(1)连接,设,则

的中点

的中点

又∵平面平面

平面.

2)由(1)知,,即两两垂直,

如图,以为原点,以所在射线为轴正半轴,建立空间直角坐标系,

.

设平面的法向量为

,即

,则

平面平面

可取向量为平面的法向量,

二面角的平面角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,PB的中点,是等边三角形,平面平面.

1)求证:平面

2)求CP与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,平面分别是的中点.

1)证明:

2)取,若上的动点,与面所成最大角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的单调区间;

2)若的唯一极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),若关于x的方程f(x)kx恰有4个不相等的实数根,则实数k的取值范围是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节、元宵节、清明节、端午节、中秋节这5个节日中随机选取2个节日来讲解其文化内涵,则春节被选中的概率是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求的零点个数;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市正在进行创建全国文明城市的复验工作,为了解市民对“创建全国文明城市”的知识知晓程度,某权威调查机构对市民进行随机调查,并对调查结果进行统计,共分为优秀和一般两类,先从结果中随机抽取100份,统计得出如下列联表:

优秀

一般

总计

25

25

50

30

20

50

总计

55

45

100

1)根据上述列联表,是否有的把握认为“创城知识的知晓程度是否为优秀与性别有关”?

2)现从调查结果为一般的市民中,按分层抽样的方法从中抽取9人,然后再从这9人中随机抽取3人,求这三位市民中男女都有的概率;

3)以样本估计总体,视样本频率为概率,从全市市民中随机抽取10人,用表示这10人中优秀的人数,求随机变量的期望和方差.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中.

查看答案和解析>>

同步练习册答案