分析 (1)由题意可得,$\overrightarrow{OA}$和$\overrightarrow{OB}$的坐标,再利用两个向量的数量积公式可得cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|•|\overrightarrow{OB}|}$,计算求的结果.
(2)以Ox轴为始边做出角-β的终边,与单位圆相交于C,则由题意可得∠AOB=α-β+2kπ,∠AOC=α+β+2kπ,k∈Z.从而求得cos(α-β)=cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|•|\overrightarrow{OB}|}$,以及cos(α+β)=cos<$\overrightarrow{OA}$,$\overrightarrow{OC}$>的结果.
解答 解:(1)由题意可得,$\overrightarrow{OA}$的坐标为(cosα,sinα),$\overrightarrow{OB}$的坐标(cosβ,sinβ).
cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|•|\overrightarrow{OB}|}$=$\frac{cosαcosβ+sinαsinβ}{1×1}$=cos(α-β).
(2)以Ox轴为始边做出角-β的终边,与单位圆相交于C,则由题意可得C(cosβ,-sinβ),∠AOB=α-β+2kπ,∠AOC=α+β+2kπ,k∈Z.
故cos(α-β)=cos∠AOB=cos<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OB}}{|\overrightarrow{OA}|•|\overrightarrow{OB}|}$=$\frac{cosαcosβ+sinαsinβ}{1×1}$=cosαcosβ+sinαsinβ.
cos(α+β)=cos∠AOC=cos<$\overrightarrow{OA}$,$\overrightarrow{OC}$>=$\frac{\overrightarrow{OA}•\overrightarrow{OC}}{|\overrightarrow{OA}|•|\overrightarrow{OC}|}$=$\frac{cosαcosβ-sinαsinβ}{1×1}$=cosαcosβ-sinαsinβ.
点评 本题主要考查终边相同的角,两角和差的余弦公式,两个向量的数量积公式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2011∈[1] | |
B. | 若a∈[1],b∈[2],则a+b∈[0] | |
C. | N=[0]∪[1]∪[2] | |
D. | 若a,b属于同一“堆”,则a-b也属于这一“堆” |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com