精英家教网 > 高中数学 > 题目详情
已知f(x)=
4-tx
(t>0)
的定义域为A,不等式x2-4x-12<0的解集为B.记p:x∈A,q:x∈B
(1)当t=2时,试判断p是q的什么条件?
(2)若p是q的必要不充分条件,求实数t的取值范围.
分析:(1)当t=2时,解不等式4-2x≥0,求出A={x|x≤2},解一元二次不等式x2-4x-12<0求出B={x|-2<x<6},由此能够得到命题p是命题q的必要不充分条件.
(2)由M={x|x<-3或x>5},N={x|(x-8)(x+a)≤0},命题p是命题q的必要不充分条件,分类讨论能够求出a的取值范围.
解答:解:(1)当t=2时,A={x|x≤2},
B={x|-2<x<6},
∵命题p:x∈A,命题q:x∈B,
∴q推不出p,p推不出q,
∴命题p是命题q的不必要不充分条件.
(2)∵A={x|4-tx≥0},
当t=0时,A=R,此时p是q的必要不充分条件;
当t>0时,A={x|x≤
4
t
},
要使得命题p是命题q的必要不充分条件,则
4
t
≥6,解得0<t≤
2
3

当t<0时,A={x|x≥
4
t
},
要使得命题p是命题q的必要不充分条件,则
4
t
≤-2,解得-2≤t<0;
综上所述,t的取值范围是{a|-2≤t≤
2
3
}.
点评:本题考查必要条件、充分条件、充要条件的性质和应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=log22x-2log2x+4,x∈[
2
,8]

(1)设t=log2x,x∈[
2
,8]
,求t的最大值与最小值;
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•乐山二模)已知f(x)=-
4+
1
x2
,点Pn(an,-
1
an+1
)
在曲线y=f(x)上(n∈N*)且a1=1,an>0.
(Ⅰ)求证:数列{
1
a
2
n
}
为等差数列,并求数列{an}的通项公式;
(Ⅱ)设数列{
a
2
n
a
2
n+1
}
的前n项和为Sn,若对于任意的n∈N*,存在正整数t,使得Snt2-t-
1
2
恒成立,求最小正整数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x-2m-5
x+2
,g(x)=mx-m-2
(m≠-
7
2
)

(I)讨论f(x)在区间(-2,+∞)上的单调性,并证明;
(II)若方程f(x)=g(x)至少有一个正数根,求实数m的取值范围;
(Ⅲ)令t=2-m,对(II)中的m,求函数g(t)=
4[t]2+1
4[t]+[
1
t
]
的最小值.
(其中[t]表示不超过t的最大整数,例如:[1]=1,[2.6]=2,[-2.6]=-3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
4-tx
(t>0)
的定义域为A,不等式x2-4x-12<0的解集为B.记p:x∈A,q:x∈B
(1)当t=2时,试判断p是q的什么条件?
(2)若p是q的必要不充分条件,求实数t的取值范围.

查看答案和解析>>

同步练习册答案