精英家教网 > 高中数学 > 题目详情

【题目】某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10(如图所示)

(1)若设休闲区的长和宽的比x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;

(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?

【答案】(1)(2) 要使公园所占面积最小,休闲区应设计为长100米,宽40

【解析】

解:(1)设休闲区的宽为a米,则长为ax米,

a2x4000,得a.

S(x)(a8)(ax20)a2x(8x20)a160

4000(8x20)·160

80(2)4160(x>1)

(2)80(2)4160≥80×24160160041605760.

当且仅当2,即x2.5时,等号成立,此时a40ax100.

所以要使公园所占面积最小,休闲区A1B1C1D1应设计为长100米,宽40米.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AC⊥AB,AD⊥DC,∠DAC=60°,PA=AC=2,AB=1.

(1)求二面角A﹣PB﹣C的余弦值.
(2)在线段CP上是否存在一点E,使得DE⊥PB,若存在,求线段CE的长度,不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,方程f(x)=0有3个不同的根.
(1)求实数m的取值范围;
(2)是否存在实数m,使得f(x)在(0,1)上恰有两个极值点x1 , x2且满足x2=2x1 , 若存在,求实数m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为.

(1)求该椭圆的方程;

(2)若过点的直线与椭圆相交于 两点,且点恰为弦的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知角α终边逆时针旋转 与单位圆交于点 ,且
(1)求 的值,
(2)求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在区间上是减函数,则实数的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据条件,求下列曲线的方程.

1已知两定点,曲线上的点距离之差的绝对值为,求曲线的方程

(2)在 轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为的椭圆的标准方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数取得最大值时的自变量的集合并说出最大值;

(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且S2=11,S5=50,则过点P(n,an)和Q(n+2,an+2)(n∈N*)的直线的一个方向向量的坐标可以是(
A.(﹣1,﹣3)
B.(1,﹣3)
C.(1,1)
D.(1,﹣1)

查看答案和解析>>

同步练习册答案