精英家教网 > 高中数学 > 题目详情

设△ABC三个角ABC的对边分别为abc,向量=(a,2b),=(sinA,1),且

(Ⅰ)求角B的大小;

(Ⅱ)若△ABC是锐角三角形,=(cosA,cosB),=(1,sinA-cosAtanB),求·的取值范围.

答案:
解析:

  解:(Ⅰ)∵,且

  ∴a-2bsinA=0,由正弦定理得sinA-2sinBsinA=0;3分

  ∵0<ABC<π,∴,得.5分

  (Ⅱ)∵△ABC是锐角三角形,∴,6分

  

  于是;8分

  由及0<C,得

  结合0<A

  ∴,得,10分

  ∴,即;12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC三个角A,B,C的对边分别为a,b,c,向量
p
=(a,2b),
q
=(sinA,1),且
p
q

(Ⅰ)求角B的大小;
(Ⅱ)若△ABC是锐角三角形,
m
=(cosA,cosB),
n
=(1,sinA-cosAtanB),求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC三个角A,B,C的对边分别为a,b,c,若1+
tanB
tanA
=
2c
3
a

(1)求角B的大小;
(2)若
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB),求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第二次(3月)周测理科数学试卷(解析版) 题型:解答题

设△ABC三个角A,B,C的对边分别为a,b,c,向量,且

(Ⅰ)求角B的大小;

(Ⅱ)若△ABC是锐角三角形,,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三第七次阶段复习达标检测理科数学试卷(解析版) 题型:解答题

设△ABC三个角ABC的对边分别为abc,向量,且

 (Ⅰ)求角B的大小;

 (Ⅱ)若△ABC是锐角三角形,,求的取值范围.

 

查看答案和解析>>

同步练习册答案