精英家教网 > 高中数学 > 题目详情

【题目】设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2006(x)=(
A.sinx
B.﹣sinx
C.cosx
D.﹣cosx

【答案】B
【解析】解:∵f0(x)=sinx,∴f1(x)=f0′(x)=cosx, f2(x)=f1′(x)=﹣sinx, =﹣cosx,
…,
∴fn+4(x)=fn(x).n∈N,
∴f2006(x)=f501×4+2(x)=f2(x)=﹣sinx.
故选:B.
【考点精析】通过灵活运用基本求导法则,掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,单位圆O与y轴负半轴交于点O',过点O'作与x轴平行的直线AB,射线O'P从O'A出发,绕着点O'逆时针方向旋转至O'B,在旋转的过程中,记∠AO'P=x(0<x<π),O'P所经过的在单位圆O内区域(阴影部分)的面积为S.

(1)如果 ,那么S=
(2)关于函数S=f(x)的以下两个结论:
①对任意 ,都有
②对任意x1 , x2∈(0,π),且x1≠x2 , 都有
其中正确的结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的角A,B,C所对的边分别为a,b,c,且 . (Ⅰ)求角A的大小;
(Ⅱ)若a=1, ,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F1 , 右焦点为F2 . 若椭圆上存在一点P,满足线段PF2相切于以椭圆的短轴为直径的圆,切点为线段PF2的中点,则该椭圆的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1表示焦点在y轴上的椭圆;命题q:双曲线 =1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x﹣4x
(1)若x∈[﹣2,2],求函数f(x)的值域;
(2)求证:函数f(x)在区间(﹣∞,﹣1]的单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为 ,则 的取值范围为(
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解不等式x2﹣(a+ )x+1<0(a≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某餐馆一天中要购买A,B两种蔬菜每斤的价格分别为2元和3元,根据需要,A种蔬菜至少要买6斤,B种蔬菜至少要买4斤,而且一天中购买这两种蔬菜的总费用不能超过60元.

(1)写出一天中A种蔬菜购买的数量x和B种蔬菜购买的数量y之间的不等式组;
(2)在下面给定的坐标系中画出(1)中不等式组表示的平面区域(用阴影表示),并求出它的面积.

查看答案和解析>>

同步练习册答案