精英家教网 > 高中数学 > 题目详情

【题目】的平均数为3,则的平均数为(

A.3B.9C.18D.27

【答案】A

【解析】

根据题意,由x1x2x3x10的平均数为3,由平均数公式分析可得x1+x2+x3+…+x1030,对于数据3x12)、3x22)、3x32)、3x102),由平均数公式可得[3x12+3x22+…+3x102],计算可得答案.

根据题意,x1x2x3x10的平均数为3

则有x1+x2+x3+…+x10)=3,即x1+x2+x3+…+x1030

对于数据3x12)、3x22)、3x32)、3x102),

其平均数[3x12+3x22+…+3x102][3x1+x2+x3+…+x10)﹣60]3

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】党中央、国务院历来高度重视青少年的健康成长.“少年强则国强”,青少年身心健康、体魄强健、意志坚强、充满活力,是一个民族旺盛生命力的体现,是社会文明进步的标志,是国家综合实力的重要方面.全面实施《国家学生体质健康标准》,把健康素质作为评价学生全面健康发展的重要指标,是新时代的要求.《国家学生体质健康标准》有一项指标是学生体质指数(),其计算公式为:,当时,认为“超重”,应加强锻炼以改善.某高中高一、高二年级学生共2000人,人数分布如表(a.为了解这2000名学生的指数情况,从中随机抽取容量为160的一个样本.

表(a

性别

年级

男生

女生

合计

高一年级

550

650

1200

高二年级

425

375

800

合计

975

1025

2000

1)为了使抽取的160个学生更具代表性,宜采取分层抽样,试给出一个合理的分层抽样方案,并确定每层应抽取出的学生人数;

2)分析这160个学生的值,统计出“超重”的学生人数分布如表(b.

表(b

性别

年级

男生

女生

高一年级

4

6

高二年级

2

4

(ⅰ)试估计这2000名学生中“超重”的学生数;

(ⅱ)对于该校的2000名学生,应用独立性检验的知识,可分析出性别变量与年级变量哪一个与“是否超重”的关联性更强.应用卡方检验,可依次得到的观测值,试判断的大小关系.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学研究表明,人极易受情绪的影响,某选手参加74胜制的兵乒球比赛.

1)在不受情绪的影响下,该选手每局获胜的概率为;但实际上,如果前一句获胜的话,此选手该局获胜的概率可提升到;而如果前一局失利的话,此选手该局获胜的概率则降为,求该选手在前3局获胜局数的分布列及数学期望;

2)假设选手的三局比赛结果互不影响,且三局比赛获胜的概率为,记为锐角的内角,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的单调区间;

2)若对于定义域内任意的恒成立,求的取值范围;

3)记,若在区间内有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC的对边分别为abc,且sin2A+sin2B+sin2CsinAsinB+sinBsinC+sinCsin A

1)证明:△ABC是正三角形;

2)如图,点D在边BC的延长线上,且BC2CDAD,求sinBAD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为贯彻执行党中央不忘初心,牢记使命主题教育活动,增强企业的凝聚力和竞争力。某重装企业的装配分厂举行装配工人技术大比武,根据以往技术资料统计,某工人装配第n件工件所用的时间(单位:分钟)大致服从的关系为kM为常数).已知该工人装配第9件工件用时20分钟,装配第M件工件用时12分钟,那么可大致推出该工人装配第4件工件所用时间是(

A.40分钟B.35分钟C.30分钟D.25分钟

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点为平面内一定点,动点为平面内曲线上的任意一点,且满足,过原点的直线交曲线两点.

1)证明:直线与直线的斜率之积为定值;

2)设直线交直线两点,求线段长度的最小值.

查看答案和解析>>

同步练习册答案