精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为数学公式的圆C经过坐标原点O,椭圆数学公式与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

解:(1)由已知可设圆心坐标为(t,t+4),
t2+(t+4)2=8得t=-2,所以圆心坐标为(-2,2),
所以圆的方程为(x+2)2+(y-2)2=8;
(2)设P(m,n),由已知椭圆与圆C的一个交点到椭圆两焦点的距离之和为10,得a=5
∴c2=25-9,c=4,故F(4,0),
则(m-4)2+(n-0)2=16,(m+2)2+(n-2)2=8
解之得:
∴P(0,0)或P(
分析:(1)设出圆心的坐标,把原点代入圆方程求得t,则圆心坐标可得,进而求得圆的方程.
(2)设P(m,n),根据题意求得F的坐标,把点P和F代入圆的方程,联立求得m和n.
点评:本题主要考查了圆的方程的综合应用.考查了考生综合运用所学知识的能力和数形结合的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知以O为圆心的圆与直线l:y=mx+(3-4m),(m∈R)恒有公共点,且要求使圆O的面积最小.
(1)写出圆O的方程;
(2)圆O与x轴相交于A、B两点,圆内动点P使|
PA
|
|
PO
|
|
PB
|
成等比数列,求
PA
PB
的范围;
(3)已知定点Q(-4,3),直线l与圆O交于M、N两点,试判断
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此时直线l的方程,若不存在,给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足
MB
OA
MA
AB
=
MB
BA
,M点的轨迹为曲线C.
(Ⅰ)求C的方程;
(Ⅱ)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第二象限内,∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,则λ,μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知直线l的参数方程为
x=2t-1 
y=4-2t .
(参数t∈R),以直角坐标原点为极点,x轴的正半轴为极轴建立相应的极坐标系.在此极坐标系中,若圆C的极坐标方程为ρ=2cosθ,则圆心C到直线l的距离为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案