精英家教网 > 高中数学 > 题目详情
4.已知向量$\overrightarrow a=(3,-4)$,$\overrightarrow b=(x,y)$,若$\overrightarrow a$∥$\overrightarrow b$,则(  )
A.3x-4y=0B.3x+4y=0C.4x+3y=0D.4x-3y=0

分析 利用向量共线,列出关系式,即可.

解答 解:向量$\overrightarrow a=(3,-4)$,$\overrightarrow b=(x,y)$,若$\overrightarrow a$∥$\overrightarrow b$,
可得3y+4x=0.
故选:C.

点评 本题考查向量的坐标运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,四边形ABCD为矩形,DD1⊥底面ABCD,AD=DD1=$\frac{1}{2}$AB,点F为AD1的中点.点E在棱AB上移动.
(1)证明:D1E⊥FD;
(2)在棱AB(不包括A、B端点)上是否存在一点E,使得DF∥平面D1CE,若存在,求出D1E的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知m∈R,命题p:对任意x∈[0,8],不等式lo${g}_{\frac{1}{3}}$(x+1)≥m2-3m恒成立;命题q:对任意x∈R,不等式|1+sin2x-cos2x|≤2m|cos(x-$\frac{π}{4}$)|恒成立.
(1)若p为真命题,求m的取值范围;
(2)若p且q为假,p或q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,F1,F2分别是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a\;,\;b>0)$的左、右两焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交于点M.若|MF2|=|F1F2|,则C的离心率是(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.10名运动员中有2名老队员和8名新队员,现从中选3人参加团体比赛,要求老队员至多1人入选且新队员甲不能入选的选法有(  )种.
A.77B.144C.35D.72

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知下列函数:①f(x)=x3-x;②f(x)=cos2x;③f(x)=ln(1-x)-ln(1+x),其中奇函数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若x,y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,则z=y-2|x|的最大值为(  )
A.-8B.-4C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数$\frac{2i}{1-i}$等于(  )
A.-2+2iB.1+iC.-1+iD.2-2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设a∈R,若x>0时,均有(3ax-2)(x2-ax-2)≥0,则a=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

同步练习册答案