精英家教网 > 高中数学 > 题目详情
已知△ABC,∠A=120°,
AB
AC
=-2,
AD
=
1
2
AB
,点G是CD 上的一点,
AG
=
1
3
AB
+m
AC
,则|
AG
|的最小值为(  )
A、
2
3
B、
2
2
C、
3
3
D、
3
4
考点:平面向量数量积的运算
专题:计算题,不等式的解法及应用,平面向量及应用
分析:运用向量的数量积的定义和共线向量的性质,可得m=
1
3
,|
AB
|•|
AC
|=4,再由向量的平方即为模的平方,结合重要不等式a2+b2≥2ab,即可得到最小值.
解答: 解:△ABC中,∠A=120°,
AB
AC
=-2,
则|
AB
|•|
AC
|•cos120°=-2,即有|
AB
|•|
AC
|=4,
由于
AD
=
1
2
AB
,则
AG
=
1
3
AB
+m
AC
=
2
3
AD
+m
AC

由于G是CD 上的一点,则m=
1
3

即有
AG
=
1
3
AB
+
AC
),
则|
AG
|2=
1
9
AB
2
+
AC
2
+2
AB
AC
)=
1
9
×(-4+|
AB
|2+|
AC
|2
1
9
×(-4+2|
AB
|•|
AC
|)=
4
9

即有|
AB
|=|
AC
|=2时,|
AG
|取得最小值,且为
2
3

故选A.
点评:本题考查平面向量的数量积的定义和性质,考查三点共线的向量表示,考查重要不等式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是(  )
A、16πB、14π
C、12πD、8π

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点分别为F1、F2,离心率为
3
,过F1且与x轴垂直的直线与双曲线C交于A,B两点,则|AF1|与|AF2|的关系是(  )
A、2|AF2|=3|AF1|
B、|AF2|=2|AF1|
C、|AF2|=3|AF1|
D、3|AF2|=4|AF1|

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算“*”为:a*b=
ab,a<0
2a+b,a≥0
,若函数f(x)=(x+1)*x,则该函数的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinθ+cosθ=1,则sin8341θ+cos1225θ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x+2)2+(y+1)2=1关于直线y=x-1对称的圆的方程为(  )
A、x2+(y-3)2=1
B、x2+(y+3)2=1
C、(x-3)2+y2=1
D、(x+3)2+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是
 
. 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个扇形的周长为a,求当扇形的圆心角为多大时,扇形的面积最大,并求这个最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)是偶函数,且f(4)=4f(2)=16.
(1)求f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0,且a≠1)在区间[2,3]上为增函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案