精英家教网 > 高中数学 > 题目详情

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站20181月~8月促销费用(万元)和产品销量(万件)的具体数据.

月份

1

2

3

4

5

6

7

8

促销费用

2

3

6

10

13

21

15

18

产品销量

1

1

2

3

3.5

5

4

4.5

1)根据数据可知具有线性相关关系,请建立的回归方程(系数精确到0.01);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元,,则每位员工每日奖励200.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元(当月奖励金额总数精确到百分位).

参考数据:,其中分别为第个月的促销费用和产品销量,.

参考公式:①对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为;②若随机变量服从正态分布,则.

【答案】1;(2元.

【解析】

1)根据公式计算回归系数,得到回归方程即可;

2)根据正态分布的特点求出各个奖励区间的概率,得出奖励值的数学期望即可.

1)由题意可知,将数据代入

所以关于的回归方程

2)由题意知6月份日销量服从正态分布

则日销量在的概率为

日销量在的概率为

日销量的概率为

所以每位员工当月的奖励金额总数为:(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设正整数数列满足.

(1)若,请写出所有可能的的取值;

(2)求证:中一定有一项的值为13

(3)若正整数m满足当时,中存在一项值为1,则称m为“归一数”,是否存在正整数m,使得m都不是“归一数”?若存在,请求出m的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,设是某抛物线上相异两点,将抛物线在之间的弧线与线段围成的区域记为;弧线上取一点,使抛物线在点处的切线与线段平行,则三角形内部记为区域.古希腊伟大的哲学家、数学家、物理学家阿基米德在公元前3世纪,巧妙地证明了两区域的面积之比为常数,并求出了该常数的值.以抛物线上两点之间的弧线为特例,探求该常数的值,并计算:向区域内任意投掷一点,则该点落在内的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求实数的取值范围;

2)设的两个零点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆的圆心为,直线过点且与轴不重合,直线交圆两点,过点的平行线交于点.

1)证明为定值,并写出点的轨迹方程;

2)设点的轨迹为曲线,直线两点,过点且与直线垂直的直线与圆交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲,ADBC是等腰梯形CDEF的两条高,,点M是线段AE的中点,将该等腰梯形沿着两条高ADBC折叠成如图乙所示的四棱锥P-ABCDEF重合,记为点P.

1)求证:

2)求点M到平面BDP距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值,且导函数的极值点是的零点,给出命题:①;②若,则存在,使得;③若有两个极值点,则;④若,且是曲线,的一条切线,则的取值范围是;则以上命题正确序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个三位数的个位数字大于十位数字,十位数字大于百位数字,我们就称这个三位数为递增三位数”.现从所有的递增三位数中随机抽取一个,则其三个数字依次成等差数列的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:

班级

参赛人数

平均数

中位数

众数

方差

45

83

86

85

82

45

83

84

85

133

某同学分析上表后得到如下结论:

①甲、乙两班学生的平均成绩相同;

②乙班优秀的人数少于甲班优秀的人数(竞赛得分分为优秀);

③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;

④乙班成绩波动比甲班小.

其中正确结论有(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案