精英家教网 > 高中数学 > 题目详情
函数f(x)=3x4是(  )
分析:利用函数的奇偶性的判断方法即可得出.
解答:解:由函数f(x)=3x4可知定义域为R.
∵f(-x)=3(-x)4=3x4=f(x),
∴函数f(x)是偶函数.
故选A.
点评:本题考查了函数的奇偶性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设函数f(x)=3x4-4x3则下列结论中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f(x)满足
0<f(x)<1”
(I)证明:函数f(x)=
3x
4
+
x3
3
(0≤x<
1
2
)是集合M中的元素;
(II)证明:函数f(x)=
3x
4
+
x3
3
(0≤x
1
2
)具有下面的性质:对于任意[m,n]⊆[0,
1
2
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x4-4(a+1)x3+6ax2-12(a>0),
(1)求函数f(x)的单调递增区间;
(2)当a=2时,求函数f(x)的极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x4-8x3-18x2+a.
(1)求函数f(x)的单调区间;
(2)若f(x)在区间[-1,1]上的最大值为6,求f(x)在该区间上的最小值.

查看答案和解析>>

同步练习册答案