精英家教网 > 高中数学 > 题目详情

【题目】设函数

(1)若是偶函数,求k的值;

(2)设不等式的解集为A,若,求实数m的取值范围;

(3)设函数,若g(x)在有零点,求实数的取值范围.

【答案】(1)(2)(3)

【解析】

1)根据函数是偶函数,建立方程进行求解即可.
2)根据,等价为不等式在[12]内有解,利用参数分离法进行转化求解即可.

3)求出的解析式,根据函数存在零点转化为方程有根,利用参数分离法进行求解即可.

1)若是偶函数,

2

则不等式等价为
,∴不等式在[12]内有解,

则,

∴当时,函数取得最大值

要使不等式在[12]内有解,则,即实数m的取值范围是

3


,当x≥1时,函数,为增函数,则
有零点,即上有解,
,即
,当且仅当,即t=2时取等号,
,即λ的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的极值点, 求函数的单调性;

(2)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】按照《国务院关于印发十三五节能减排综合工作方案的通知》(国发〔201674号)的要求,到2020年,全国二氧化硫排放总量要控制在1580万吨以内,要比2015年下降15%.假设十三五期间每一年二氧化硫排放总量下降的百分比都相等,2015年后第年的二氧化硫律放总量最大值为万吨.

1)求的解析式;

2)求2019年全国二氧化赖持放总量要控制在多少万晚以内(精确到1万吨).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品AB,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品A

投资结果

获利40%

不赔不赚

亏损20%

概率

产品B

投资结果

获利20%

不赔不赚

亏损10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙两人分别选择了产品A和产品B投资,如果一年后他们中至少有一人获利的概率大于,求实数p的取值范围;

(2)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,底面是边长为2的正三角形,侧棱长为的中点

1)若,证明:平面

2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线和曲线交于两点之间),且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从分别写有123455张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的单调区间.

1fx)=3|x|

2fx)=|x22x3|

查看答案和解析>>

同步练习册答案